(Class Lecture Notes)
(Class Lecture Notes)
Line 32: Line 32:
 
* [[Lecture 13 - Kernel function for SVMs and ANNs introduction_OldKiwi]]  -- Nearly empty
 
* [[Lecture 13 - Kernel function for SVMs and ANNs introduction_OldKiwi]]  -- Nearly empty
 
* [[Lecture 14 - ANNs, Non-parametric Density Estimation (Parzen Window)_OldKiwi]] -- empty
 
* [[Lecture 14 - ANNs, Non-parametric Density Estimation (Parzen Window)_OldKiwi]] -- empty
* [[Lecture 15 - Parzen Window Method_OldKiwi]]
+
* [[Lecture 15 - Parzen Window Method_OldKiwi]] -- nearly empty
 
* [[Lecture 16 - Parzen Window Method and K-nearest Neighbor Density Estimate_OldKiwi]]
 
* [[Lecture 16 - Parzen Window Method and K-nearest Neighbor Density Estimate_OldKiwi]]
 
* [[Lecture 17 - Nearest Neighbors Clarification Rule and Metrics_OldKiwi]]
 
* [[Lecture 17 - Nearest Neighbors Clarification Rule and Metrics_OldKiwi]]

Revision as of 08:44, 20 March 2008

Introduction

This is the page for the course ECE662: Pattern Recognition and Decision Making processes.

General Course Information

  • Instructor: Mimi Boutin
  • Office: MSEE342
  • Email: mboutin at purdue dot edu
  • Class meets Tu,Th 9-10:15am in ME118
  • Office hours: Monday, Thursday 4-5pm

Course Website

Course Webpage

Current Kiwi

WebCT

Class Lecture Notes

Course Topics

Topics that don't have any links to them...

(Well, at least the didn't before...)

Homework

Forum_OldKiwi

Tools_OldKiwi

Glossary

Reference_OldKiwi

Textbooks

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn