Line 14: Line 14:
 
Jump to [[Lecture1ECE438F13|Lecture 1]], [[Lecture2ECE438F13|2]], [[Lecture3ECE438F13|3]] ,[[Lecture4ECE438F13|4]] ,[[Lecture5ECE438F13|5]] ,[[Lecture6ECE438F13|6]] ,[[Lecture7ECE438F13|7]] ,[[Lecture8ECE438F13|8]] ,[[Lecture9ECE438F13|9]] ,[[Lecture10ECE438F13|10]] ,[[Lecture11ECE438F13|11]] ,[[Lecture12ECE438F13|12]] ,[[Lecture13ECE438F13|13]] ,[[Lecture14ECE438F13|14]] ,[[Lecture15ECE438F13|15]] ,[[Lecture16ECE438F13|16]] ,[[Lecture17ECE438F13|17]] ,[[Lecture18ECE438F13|18]] ,[[Lecture19ECE438F13|19]] ,[[Lecture20ECE438F13|20]] ,[[Lecture21ECE438F13|21]] ,[[Lecture22ECE438F13|22]] ,[[Lecture23ECE438F13|23]] ,[[Lecture24ECE438F13|24]] ,[[Lecture25ECE438F13|25]] ,[[Lecture26ECE438F13|26]] ,[[Lecture27ECE438F13|27]] ,[[Lecture28ECE438F13|28]] ,[[Lecture29ECE438F13|29]] ,[[Lecture30ECE438F13|30]] ,[[Lecture31ECE438F13|31]] ,[[Lecture32ECE438F13|32]] ,[[Lecture33ECE438F13|33]] ,[[Lecture34ECE438F13|34]] ,[[Lecture35ECE438F13|35]] ,[[Lecture36ECE438F13|36]] ,[[Lecture37ECE438F13|37]] ,[[Lecture38ECE438F13|38]] ,[[Lecture39ECE438F13|39]] ,[[Lecture40ECE438F13|40]] ,[[Lecture41ECE438F13|41]] ,[[Lecture42ECE438F13|42]] ,[[Lecture43ECE438F13|43]] ,[[Lecture44ECE438F13|44]]
 
Jump to [[Lecture1ECE438F13|Lecture 1]], [[Lecture2ECE438F13|2]], [[Lecture3ECE438F13|3]] ,[[Lecture4ECE438F13|4]] ,[[Lecture5ECE438F13|5]] ,[[Lecture6ECE438F13|6]] ,[[Lecture7ECE438F13|7]] ,[[Lecture8ECE438F13|8]] ,[[Lecture9ECE438F13|9]] ,[[Lecture10ECE438F13|10]] ,[[Lecture11ECE438F13|11]] ,[[Lecture12ECE438F13|12]] ,[[Lecture13ECE438F13|13]] ,[[Lecture14ECE438F13|14]] ,[[Lecture15ECE438F13|15]] ,[[Lecture16ECE438F13|16]] ,[[Lecture17ECE438F13|17]] ,[[Lecture18ECE438F13|18]] ,[[Lecture19ECE438F13|19]] ,[[Lecture20ECE438F13|20]] ,[[Lecture21ECE438F13|21]] ,[[Lecture22ECE438F13|22]] ,[[Lecture23ECE438F13|23]] ,[[Lecture24ECE438F13|24]] ,[[Lecture25ECE438F13|25]] ,[[Lecture26ECE438F13|26]] ,[[Lecture27ECE438F13|27]] ,[[Lecture28ECE438F13|28]] ,[[Lecture29ECE438F13|29]] ,[[Lecture30ECE438F13|30]] ,[[Lecture31ECE438F13|31]] ,[[Lecture32ECE438F13|32]] ,[[Lecture33ECE438F13|33]] ,[[Lecture34ECE438F13|34]] ,[[Lecture35ECE438F13|35]] ,[[Lecture36ECE438F13|36]] ,[[Lecture37ECE438F13|37]] ,[[Lecture38ECE438F13|38]] ,[[Lecture39ECE438F13|39]] ,[[Lecture40ECE438F13|40]] ,[[Lecture41ECE438F13|41]] ,[[Lecture42ECE438F13|42]] ,[[Lecture43ECE438F13|43]] ,[[Lecture44ECE438F13|44]]
 
----
 
----
Today we analyzed the frequency response of the average filter discussed in the [[Lecture35ECE438F13|previous lecture]]. More specifically we computed its discrete-space Fourier transform and looked at [[ECE_438_Fall_2009_mboutin_plotCSFTofbasicfilters|its plot]]. Using the separability of the filter greatly facilitated the computation of its Fourier transform. We discussed different ways to determine whether a filter is separable and how to separate it. We then considered another filter (edge detector). Although that filter is not separable, we were able to write it as a sum of two separable filters.  
+
Today we analyzed the frequency response of the average filter discussed in the [[Lecture36ECE438F13|previous lecture]]. More specifically we computed its discrete-space Fourier transform and looked at [[ECE_438_Fall_2009_mboutin_plotCSFTofbasicfilters|its plot]]. Using the separability of the filter greatly facilitated the computation of its Fourier transform. We discussed different ways to determine whether a filter is separable and how to separate it. We then considered another filter (edge detector). Although that filter is not separable, we were able to write it as a sum of two separable filters.  
  
 
==Relevant Rhea Material==
 
==Relevant Rhea Material==

Revision as of 05:52, 15 November 2013


Lecture 37 Blog, ECE438 Fall 2013, Prof. Boutin

Friday November 15, 2013 (Week 13) - See Course Outline.

Jump to Lecture 1, 2, 3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,34 ,35 ,36 ,37 ,38 ,39 ,40 ,41 ,42 ,43 ,44


Today we analyzed the frequency response of the average filter discussed in the previous lecture. More specifically we computed its discrete-space Fourier transform and looked at its plot. Using the separability of the filter greatly facilitated the computation of its Fourier transform. We discussed different ways to determine whether a filter is separable and how to separate it. We then considered another filter (edge detector). Although that filter is not separable, we were able to write it as a sum of two separable filters.

Relevant Rhea Material

Action items

  • Work on your bonus point project.
  • Begin working on the last homework.


Previous: Lecture 36 Next: Lecture 38


Back to ECE438 Fall 2013

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach