Line 13: | Line 13: | ||
Jump to [[Lecture1ECE438F13|Lecture 1]], [[Lecture2ECE438F13|2]], [[Lecture3ECE438F13|3]] ,[[Lecture4ECE438F13|4]] ,[[Lecture5ECE438F13|5]] ,[[Lecture6ECE438F13|6]] ,[[Lecture7ECE438F13|7]] ,[[Lecture8ECE438F13|8]] ,[[Lecture9ECE438F13|9]] ,[[Lecture10ECE438F13|10]] ,[[Lecture11ECE438F13|11]] ,[[Lecture12ECE438F13|12]] ,[[Lecture13ECE438F13|13]] ,[[Lecture14ECE438F13|14]] ,[[Lecture15ECE438F13|15]] ,[[Lecture16ECE438F13|16]] ,[[Lecture17ECE438F13|17]] ,[[Lecture18ECE438F13|18]] ,[[Lecture19ECE438F13|19]] ,[[Lecture20ECE438F13|20]] ,[[Lecture21ECE438F13|21]] ,[[Lecture22ECE438F13|22]] ,[[Lecture23ECE438F13|23]] ,[[Lecture24ECE438F13|24]] ,[[Lecture25ECE438F13|25]] ,[[Lecture26ECE438F13|26]] ,[[Lecture27ECE438F13|27]] ,[[Lecture28ECE438F13|28]] ,[[Lecture29ECE438F13|29]] ,[[Lecture30ECE438F13|30]] ,[[Lecture31ECE438F13|31]] ,[[Lecture32ECE438F13|32]] ,[[Lecture33ECE438F13|33]] ,[[Lecture34ECE438F13|34]] ,[[Lecture35ECE438F13|35]] ,[[Lecture36ECE438F13|36]] ,[[Lecture37ECE438F13|37]] ,[[Lecture38ECE438F13|38]] ,[[Lecture39ECE438F13|39]] ,[[Lecture40ECE438F13|40]] ,[[Lecture41ECE438F13|41]] ,[[Lecture42ECE438F13|42]] ,[[Lecture43ECE438F13|43]] ,[[Lecture44ECE438F13|44]] | Jump to [[Lecture1ECE438F13|Lecture 1]], [[Lecture2ECE438F13|2]], [[Lecture3ECE438F13|3]] ,[[Lecture4ECE438F13|4]] ,[[Lecture5ECE438F13|5]] ,[[Lecture6ECE438F13|6]] ,[[Lecture7ECE438F13|7]] ,[[Lecture8ECE438F13|8]] ,[[Lecture9ECE438F13|9]] ,[[Lecture10ECE438F13|10]] ,[[Lecture11ECE438F13|11]] ,[[Lecture12ECE438F13|12]] ,[[Lecture13ECE438F13|13]] ,[[Lecture14ECE438F13|14]] ,[[Lecture15ECE438F13|15]] ,[[Lecture16ECE438F13|16]] ,[[Lecture17ECE438F13|17]] ,[[Lecture18ECE438F13|18]] ,[[Lecture19ECE438F13|19]] ,[[Lecture20ECE438F13|20]] ,[[Lecture21ECE438F13|21]] ,[[Lecture22ECE438F13|22]] ,[[Lecture23ECE438F13|23]] ,[[Lecture24ECE438F13|24]] ,[[Lecture25ECE438F13|25]] ,[[Lecture26ECE438F13|26]] ,[[Lecture27ECE438F13|27]] ,[[Lecture28ECE438F13|28]] ,[[Lecture29ECE438F13|29]] ,[[Lecture30ECE438F13|30]] ,[[Lecture31ECE438F13|31]] ,[[Lecture32ECE438F13|32]] ,[[Lecture33ECE438F13|33]] ,[[Lecture34ECE438F13|34]] ,[[Lecture35ECE438F13|35]] ,[[Lecture36ECE438F13|36]] ,[[Lecture37ECE438F13|37]] ,[[Lecture38ECE438F13|38]] ,[[Lecture39ECE438F13|39]] ,[[Lecture40ECE438F13|40]] ,[[Lecture41ECE438F13|41]] ,[[Lecture42ECE438F13|42]] ,[[Lecture43ECE438F13|43]] ,[[Lecture44ECE438F13|44]] | ||
---- | ---- | ||
− | Today we talked about downsampling. More specifically, we derived the relationship between the DTFT of <math>x_2[n]</math> and of <math>x_1[n]</math> when <math>x_2[n]=x_1[Dn]</math> for some positive integer D. Remember that this relationship holds regardless of how <math>x_1[n]</math> was obtained. In particular, it holds even if <math>x_1[n]</math> is a sampling of a signal that violates Nyquist condition. | + | Today we talked about downsampling. More specifically, we derived the relationship between the DTFT of <math>x_2[n]</math> and the DTFT of <math>x_1[n]</math> when <math>x_2[n]=x_1[Dn]</math> for some positive integer D. Remember that this relationship holds regardless of how <math>x_1[n]</math> was obtained. In particular, it holds even if <math>x_1[n]</math> is a sampling of a signal that violates Nyquist condition. |
==Action Items== | ==Action Items== |
Revision as of 04:39, 25 September 2013
Lecture 14 Blog, ECE438 Fall 2013, Prof. Boutin
Monday September 23, 2013 (Week 6) - See Course Outline.
Jump to Lecture 1, 2, 3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,34 ,35 ,36 ,37 ,38 ,39 ,40 ,41 ,42 ,43 ,44
Today we talked about downsampling. More specifically, we derived the relationship between the DTFT of $ x_2[n] $ and the DTFT of $ x_1[n] $ when $ x_2[n]=x_1[Dn] $ for some positive integer D. Remember that this relationship holds regardless of how $ x_1[n] $ was obtained. In particular, it holds even if $ x_1[n] $ is a sampling of a signal that violates Nyquist condition.
Action Items
- Keep working on the fifth homework. It's due Friday.
- Continue preparing for the first test:
- Review the relationship between the z-transform and the Fourier transform
- Review how to invert a z-transform
Previous: Lecture 14 Next: Lecture 16