(81 intermediate revisions by 9 users not shown) | |||
Line 2: | Line 2: | ||
[[Category:ECE302]] | [[Category:ECE302]] | ||
[[Category:ECE302Spring2013Boutin]] | [[Category:ECE302Spring2013Boutin]] | ||
+ | [[Category:probability]] | ||
+ | |||
=Rhea Section for [[ECE302]], Professor [[user:mboutin|Boutin]], Spring 2013= | =Rhea Section for [[ECE302]], Professor [[user:mboutin|Boutin]], Spring 2013= | ||
Line 8: | Line 10: | ||
<div style="border-bottom: rgb(68,68,136) 1px solid; text-align: center; border-left: rgb(51,51,136) 4px solid; padding-bottom: 2em; margin: auto; padding-left: 2em; width: 30em; padding-right: 2em; background: rgb(238,238,255); border-top: rgb(68,68,136) 1px solid; border-right: rgb(68,68,136) 1px solid; padding-top: 2em"> | <div style="border-bottom: rgb(68,68,136) 1px solid; text-align: center; border-left: rgb(51,51,136) 4px solid; padding-bottom: 2em; margin: auto; padding-left: 2em; width: 30em; padding-right: 2em; background: rgb(238,238,255); border-top: rgb(68,68,136) 1px solid; border-right: rgb(68,68,136) 1px solid; padding-top: 2em"> | ||
Message Area: | Message Area: | ||
− | + | *Sample quizzes has been uploaded to help you to review the final exam! | |
− | + | *Homework 7 solution has been posted. | |
− | + | </div> | |
== Course Information == | == Course Information == | ||
Line 24: | Line 26: | ||
**Test 1: Friday February 8, 2013. | **Test 1: Friday February 8, 2013. | ||
**Test 2: Wednesday April 3, 2013. | **Test 2: Wednesday April 3, 2013. | ||
− | **Final: | + | **Final: Wednesday May 1, 2013 |
---- | ---- | ||
Line 32: | Line 34: | ||
---- | ---- | ||
== Lecture Blog == | == Lecture Blog == | ||
− | [[Lecture1_blog_ECE302S13_Boutin| | + | *Week(1-4): |
+ | :[[Lecture1_blog_ECE302S13_Boutin|1]], [[Lecture2_blog_ECE302S13_Boutin|2]], [[Lecture3_blog_ECE302S13_Boutin|3]], [[Lecture4_blog_ECE302S13_Boutin|4]],[[Lecture5_blog_ECE302S13_Boutin|5]], [[Lecture6_blog_ECE302S13_Boutin|6]], [[Lecture7_blog_ECE302S13_Boutin|7]],[[Lecture8_blog_ECE302S13_Boutin|8]],[[Lecture9_blog_ECE302S13_Boutin|9]],[[Lecture10_blog_ECE302S13_Boutin|10]],[[Lecture11_blog_ECE302S13_Boutin|11]] | ||
+ | *Week(5-8) | ||
+ | :[[Lecture12_blog_ECE302S13_Boutin|12]],[[Lecture13_blog_ECE302S13_Boutin|13]],[[Lecture14_blog_ECE302S13_Boutin|14]],[[Lecture15_blog_ECE302S13_Boutin|15]],[[Lecture16_blog_ECE302S13_Boutin|16]],[[Lecture17_blog_ECE302S13_Boutin|17]],[[Lecture18_blog_ECE302S13_Boutin|18]],[[Lecture19_blog_ECE302S13_Boutin|19]],[[Lecture20_blog_ECE302S13_Boutin|20]],[[Lecture21_blog_ECE302S13_Boutin|21]],[[Lecture22_blog_ECE302S13_Boutin|22]],[[Lecture23_blog_ECE302S13_Boutin|23]] | ||
+ | *Week(9-12) <Week 10- Spring Break!> | ||
+ | :[[Lecture24_blog_ECE302S13_Boutin|24]],[[Lecture25_blog_ECE302S13_Boutin|25]],[[Lecture26_blog_ECE302S13_Boutin|26]],[[Lecture27_blog_ECE302S13_Boutin|27]],[[Lecture28_blog_ECE302S13_Boutin|28]],[[Lecture29_blog_ECE302S13_Boutin|29]],[[Lecture30_blog_ECE302S13_Boutin|30]],[[Lecture31_blog_ECE302S13_Boutin|31]],[[Lecture32_blog_ECE302S13_Boutin|32]] | ||
+ | *Week(13-16) | ||
+ | :[[Lecture33_blog_ECE302S13_Boutin|33]],[[Lecture34_blog_ECE302S13_Boutin|34]],[[Lecture35_blog_ECE302S13_Boutin|35]],[[Lecture36_blog_ECE302S13_Boutin|36]],[[Lecture37_blog_ECE302S13_Boutin|37]],[[Lecture38_blog_ECE302S13_Boutin|38]],[[Lecture39_blog_ECE302S13_Boutin|39]],[[Lecture40_blog_ECE302S13_Boutin|40]],[[Lecture41_blog_ECE302S13_Boutin|41]],[[Lecture42_blog_ECE302S13_Boutin|42]],[[Lecture43_blog_ECE302S13_Boutin|43]],[[Lecture44_blog_ECE302S13_Boutin|44]] | ||
+ | *Week(17) Final Exam Week | ||
+ | :Final exam is on Wednesday May 1, 1:00p - 3:00p STEW 130 | ||
+ | |||
---- | ---- | ||
== Collectively Solved [[:Category:Problem_solving|Practice Problems]] == | == Collectively Solved [[:Category:Problem_solving|Practice Problems]] == | ||
Line 40: | Line 52: | ||
**[[Practice_Question_definition_set_union_ECE302S13Boutin|Union of two sets]] | **[[Practice_Question_definition_set_union_ECE302S13Boutin|Union of two sets]] | ||
**[[Practice_Question_definition_set_union_2_ECE302S13Boutin|Union of two sets (again)]] | **[[Practice_Question_definition_set_union_2_ECE302S13Boutin|Union of two sets (again)]] | ||
+ | *Conditional Probability | ||
+ | **[[Practice_Question_Monty_Hall_ECE302S13Boutin|Explain the Monty Hall problem using conditional probability]] | ||
+ | *Discrete Random Variables | ||
+ | **[[Practice_Question_probability_normalization_ECE302S13Boutin|Normalizing the probability mass function of a discrete random variable]] | ||
+ | *Continuous random variables | ||
+ | **[[Practice_Question_gaussian_normalization_ECE302S13Boutin|Normalizing the probability mass function of a Gaussian random variable]] | ||
+ | **[[Practice_Question_joint_from_marginals_independent_variables_ECE302S13Boutin|Obtaining the joint pdf from the marginal pdfs of two independent variables]] | ||
+ | **[[Practice_Question_linear_random_variable_probability_ECE302S13Boutin|Compute a probability]] | ||
+ | **[[Practice_Question_uniform_random_variable_CDF_ECE302S13Boutin|Find the CDF]] | ||
+ | **[[Practice_Question_uniform_random_variable_mean_ECE302S13Boutin|Compute the mean]] | ||
+ | **[[Practice_Question_moment_order_zero_Gaussian_ECE302S13Boutin|Compute the zero-th order moment of a Gaussian]] | ||
+ | **[[Practice_Question_moment_order_one_Gaussian_ECE302S13Boutin|Compute the first order moment of a Gaussian]] | ||
+ | **[[Practice_Question_moment_order_two_Gaussian_ECE302S13Boutin|Compute the second order moment of a Gaussian]] | ||
+ | **[[Practice_Question_comparing_probabilities_Gaussians_ECE302S13Boutin|Comparing probabilities for different Gaussians]] | ||
+ | **[[Practice_Question_probability_meeting_occurs_ECE302S13Boutin|Compute the probability that a meeting will occur]] | ||
+ | **[[Practice_Question_find_conditional_pdf_ECE302S13Boutin|Find the conditional probability density function]] | ||
+ | **[[Practice_Question_find_conditional_ellipse_ECE302S13Boutin|Find the conditional probability density function (again)]] | ||
+ | **[[Practice_Question_find_conditional_event_ECE302S13Boutin|Find the conditional probability density function (conditioned on an event this time)]] | ||
+ | **[[Practice_Question_independence_ECE302S13Boutin|Determine if X and Y independent from their joint density]] | ||
+ | **[[Practice_Question_characteristic_function_ECE302S13Boutin|Recover the pmf corresponding to this characteristic function]] | ||
+ | **[[Practice_Question_characteristic_function_exponential_random_variable_ECE302S13Boutin|Obtain the characteristic function of an exponential random variable]] | ||
+ | **[[Practice_Question_characteristic_linear_function_random_variable_ECE302S13Boutin|pdf of Y=aX+b ]] | ||
+ | **[[Practice_Question_2D_Gaussian_ECE302S13Boutin|Various Questions about a 2D Gaussian]] | ||
+ | *Random Processes | ||
+ | **[[Practice_Question_what_is_stationary_increment_property_sum_process_ECE302S13|the stationary increment property of a sum process]] | ||
+ | ---- | ||
+ | ==Quizzes== | ||
+ | *[[quiz1_set_definition_ECE302_S13_Boutin|Quiz 1 on the definition of a set]] | ||
+ | *[[quiz2_set_operation_prove_De_Morgan_Law_ECE302_S13_Boutin|Quiz 2 on proving De Morgan's law]] | ||
+ | *[[quiz3_set_theory_probability_S13_Boutin|Quiz 3 set theoretic probability]] | ||
+ | *[[quiz4_expectation_discrete_RV_ECE302_S13_Boutin|Quiz 4 Expectation of discrete random variable]] | ||
+ | *[[quiz5_cdf_GaussianRV_ECE302_S13_Boutin|Quiz 5 cdf of Normal random variable (part1)]] | ||
+ | *[[quiz6_cdf_GaussianRV2_ECE302_S13_Boutin|Quiz 6 cdf of Normal random variable (part2)]] | ||
+ | *[[quiz7_expectation_continuousRV_ECE302_S13_Boutin|Quiz 7 Expectation of continuous random variable]] | ||
+ | *[[quiz8_Poisson_process_ECE302_S13_Boutin|Quiz 8 Poisson Process]] | ||
---- | ---- | ||
==Homework== | ==Homework== | ||
*[[HW1_ECE302_S13_Boutin|HW1]] | *[[HW1_ECE302_S13_Boutin|HW1]] | ||
− | * | + | *[[HW2_ECE302_S13_Boutin|HW2]] |
− | * | + | *[[HW3_ECE302_S13_Boutin|HW3]] |
− | + | *[[HW4_ECE302_S13_Boutin|HW4]] | |
+ | *[[HW5_ECE302_S13_Boutin|HW5]] | ||
+ | *[[HW6_ECE302_S13_Boutin|HW6]] | ||
+ | *[[HW7_ECE302_S13_Boutin|HW7]] (Includes all practice problems assigned after the lecture-- see lecture blogs ) | ||
− | + | ==Homework Discussion and Solutions== | |
− | == | + | *[[hw1_discussion_sln_ECE302_S13_Boutin|HW1_solution]] |
− | * | + | *[[hw2_discussion_sln_ECE302_S13_Boutin|HW2_solution]] |
− | + | *[[hw3_discussion_sln_ECE302_S13_Boutin|HW3_solution]] | |
− | + | *[[hw4_discussion_sln_ECE302_S13_Boutin|HW4_solution]] | |
− | * | + | *[[hw6_discussion_sln_ECE302_S13_Boutin|HW6_solution]] |
− | * | + | *[[hw7_discussion_sln_ECE302_S13_Boutin|HW7_solution]] |
− | * | + | |
− | * | + | |
− | * | + | |
---- | ---- | ||
== Relevant Resources == | == Relevant Resources == | ||
− | *[[Probability_practice_problems_list|Practice Problems]] | + | *[[Probability_practice_problems_list|Practice Problems on Probability]] |
− | *[[Collective Table of Formulas| | + | *Rhea's [[Collective Table of Formulas| Collective Table of Formulas]]. |
+ | **[[Probability_Formulas|Probability Formulas]] | ||
+ | **[[Probability_Distribution|Probability Distributions]] | ||
+ | *A tutorial on [[counting_subsets_of_sets|Counting Partitions or Subsets]], by [[Math_squad|Math Squad]] member [[user:somussma|Steve Mussmann]] | ||
+ | **[[Counting_subsets_of_sets_examples|examples of counting problems]] | ||
+ | **[[Counting_subsets_of_sets_problems|practice problems]] | ||
+ | *A tutorial about [[bayes_theorem_S13|Bayes' Theorem]], by [[Math_squad|Math Squad]] member [[user:Mhossain|Maliha Hossain]] | ||
+ | **[[bayes_theorem_eg1_S13|Example 1: Quality Control]] | ||
+ | **[[bayes_theorem_eg2_S13|Example 2: False Positive Paradox]] | ||
+ | **[[bayes_theorem_eg3_S13|Example 3: Monty Hall Problem]] | ||
---- | ---- | ||
− | == Your turn! | + | == Honors Projects == |
+ | *[[Honors_project_1_ECE302S12|Oluwatosin Adeosun]] | ||
+ | |||
+ | ---- | ||
+ | ==Your turn! Bonus Point opportunities== | ||
+ | |||
+ | ==Exercises== | ||
+ | #[[Bonus_point_1_ECE302_Spring2012_Boutin| Invent a problem on conditional probability or independence and share it with your classmates]] (0.5% course grade bonus) | ||
+ | #[[Bonus_point_2_ECE302_Spring2012_Boutin| Find a mistake in your classmates' solutions]] (0.5% course grade bonus) | ||
+ | #[[Bonus_point_3_ECE302_Spring2012_Boutin| Invent a problem on expectation and/or variance of a discrete random variable]] (0.5% course grade bonus) | ||
+ | #[[Bonus_point_4_ECE302_Spring2012_Boutin| Share your solution of hw 5]] (0.5% course grade bonus) | ||
+ | #[[Bonus_point_5_ECE302_Spring2012_Boutin| Explain the stationary increment property of sum processes]] (0.5% course grade bonus) | ||
+ | ==Class Project== | ||
Students in ECE302 Spring 2013 have the opportunity to earn up to a 3% bonus by contributing a Rhea page on a subject related to probability. | Students in ECE302 Spring 2013 have the opportunity to earn up to a 3% bonus by contributing a Rhea page on a subject related to probability. | ||
Line 73: | Line 141: | ||
! Topic Description | ! Topic Description | ||
! Student Name/nickname | ! Student Name/nickname | ||
+ | |- | ||
+ | | 0 | ||
+ | | [[template_bonus_point_project_page_ECE301S12|Project Template]] | ||
+ | | | ||
|- | |- | ||
| 1 | | 1 | ||
− | | | + | | [[Methods of generating random variables|Methods of generating random variables]] |
− | | | + | | Zhenming Zhang |
|- | |- | ||
| 2 | | 2 | ||
− | | | + | | [[Applications of Poisson Random Variables|Applications of Poisson Random Variables]] |
− | | | + | | Trevor Holloway |
|- | |- | ||
| 3 | | 3 | ||
Line 98: | Line 170: | ||
| Name | | Name | ||
|- | |- | ||
+ | | 7 | ||
+ | | [[ECE302S13Notes|TF101 Slectures]] | ||
+ | | Bob Wayner | ||
+ | |- | ||
+ | | 8 | ||
+ | | [[CorrelationvsCovariance|Correlation vs. Covariance]] | ||
+ | | Blue | ||
|} | |} | ||
---- | ---- | ||
[[List_of_Course_Wikis|Back to List of Course Wikis]] | [[List_of_Course_Wikis|Back to List of Course Wikis]] |
Latest revision as of 19:14, 30 April 2013
Rhea Section for ECE302, Professor Boutin, Spring 2013
MWF 12:30- 1:20pm in MSEE B012
Message Area:
- Sample quizzes has been uploaded to help you to review the final exam!
- Homework 7 solution has been posted.
Course Information
- Instructor: Prof. Mimi
- Office: MSEE 342
- Office hours are listed here.
- Teaching Assistant: Wei-Kang Hsu
- Email: hsu59 at purdue dot you know what
- Office hours: TF 2:00-4:00 pm EE209
- Schedule
- Course Syllabus
- Important Dates:
- Test 1: Friday February 8, 2013.
- Test 2: Wednesday April 3, 2013.
- Final: Wednesday May 1, 2013
Textbook
Probability, Statistics, and Random Processes for Electrical Engineering, 3rd Edition, by Alberto Leon-Garcia, Pearson Education, Inc., 2008, ISBN 0-13-601641-3
Lecture Blog
- Week(1-4):
- Week(5-8)
- Week(9-12) <Week 10- Spring Break!>
- Week(13-16)
- Week(17) Final Exam Week
- Final exam is on Wednesday May 1, 1:00p - 3:00p STEW 130
Collectively Solved Practice Problems
- Definition of a set
- Set operations
- Conditional Probability
- Discrete Random Variables
- Continuous random variables
- Normalizing the probability mass function of a Gaussian random variable
- Obtaining the joint pdf from the marginal pdfs of two independent variables
- Compute a probability
- Find the CDF
- Compute the mean
- Compute the zero-th order moment of a Gaussian
- Compute the first order moment of a Gaussian
- Compute the second order moment of a Gaussian
- Comparing probabilities for different Gaussians
- Compute the probability that a meeting will occur
- Find the conditional probability density function
- Find the conditional probability density function (again)
- Find the conditional probability density function (conditioned on an event this time)
- Determine if X and Y independent from their joint density
- Recover the pmf corresponding to this characteristic function
- Obtain the characteristic function of an exponential random variable
- pdf of Y=aX+b
- Various Questions about a 2D Gaussian
- Random Processes
Quizzes
- Quiz 1 on the definition of a set
- Quiz 2 on proving De Morgan's law
- Quiz 3 set theoretic probability
- Quiz 4 Expectation of discrete random variable
- Quiz 5 cdf of Normal random variable (part1)
- Quiz 6 cdf of Normal random variable (part2)
- Quiz 7 Expectation of continuous random variable
- Quiz 8 Poisson Process
Homework
- HW1
- HW2
- HW3
- HW4
- HW5
- HW6
- HW7 (Includes all practice problems assigned after the lecture-- see lecture blogs )
Homework Discussion and Solutions
Relevant Resources
- Practice Problems on Probability
- Rhea's Collective Table of Formulas.
- A tutorial on Counting Partitions or Subsets, by Math Squad member Steve Mussmann
- A tutorial about Bayes' Theorem, by Math Squad member Maliha Hossain
Honors Projects
Your turn! Bonus Point opportunities
Exercises
- Invent a problem on conditional probability or independence and share it with your classmates (0.5% course grade bonus)
- Find a mistake in your classmates' solutions (0.5% course grade bonus)
- Invent a problem on expectation and/or variance of a discrete random variable (0.5% course grade bonus)
- Share your solution of hw 5 (0.5% course grade bonus)
- Explain the stationary increment property of sum processes (0.5% course grade bonus)
Class Project
Students in ECE302 Spring 2013 have the opportunity to earn up to a 3% bonus by contributing a Rhea page on a subject related to probability. To pick a subject, simply write your name next to it. Your page will be graded based on content as well as interactions with other people (page views, comments/questions on the page, etc.). The number of links to other courses and subjects will also be taken into account: the more the merrier! Please do not simply copy the lecture notes and do not plagiarize. Read Rhea's copyright policy before proceeding.
Topic Number | Topic Description | Student Name/nickname |
---|---|---|
0 | Project Template | |
1 | Methods of generating random variables | Zhenming Zhang |
2 | Applications of Poisson Random Variables | Trevor Holloway |
3 | Something related to Exponential random variables | Name |
4 | Something related to Gaussian random variables | Name |
5 | Something related to the Estimation of random variables | Name |
6 | Automatic music composition project | Name |
7 | TF101 Slectures | Bob Wayner |
8 | Correlation vs. Covariance | Blue |