Practice Problem: Determine if X and Y are independent


Two continuous random variables X and Y have the following joint probability density function:

$ f_{XY} (x,y) = C e^{\frac{-(4 x^2+ 9 y^2)}{2}}, $

where C is an appropriately chosen constant. Are X and Y independent? Answer yes/no and give a mathematical proof of your answer.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Some students tried this problem on the quiz and try to integrate $ f_{XY}(x,y) $ w.r.t x directly.


However, please note that
$ \int e^{-2 x^2} dx \neq \frac{1}{-2 x^2} e^{-2 x^2} $
Hint:
X and Y are independent iff $ f_{XY}(x,y)= f_{X}(x)f_{Y}(y) $
$ f_{X}(x)= \int_{-\infty}^{\infty} f_{XY}(x,y)dy $
When integrating w.r.t. y, x can be viewed as a constant and thus you can pull the term associated with x outside the integral.
Try to reformulate the integrand to a Gaussian pdf with a coefficient.
Use the property that the integration of Gaussian pdf equals 1.

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE302 Spring 2013 Prof. Boutin

Back to ECE302

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang