Contents
Practice Problem: Obtain the moment generating function for an exponential random variable
Let X be an exponential random variable. Recall that the pdf of an exponential random variable is given by
$ \ f_X(x)= \lambda e^{-\lambda x}, \text{ for }x\geq 0 . $
Obtain the moment generating function MX(s) of X.
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
Hint:
- $ M_X(s)=E[e^{sX}] = \int e^{sx} f_{X}(x)dx $
- get an answer for s < λ
- note that the integrating range of x starts from 0
Answer 2
- $ M_X(jw) = E[e^{jwx}] $
- $ E[e^{jwx}] = \int e^{jwx} f_{X}(x)dx \text{ For } x \geq 0 $
- $ M_X(jw) = \int_{0}^{\infty} e^{jwx} \lambda e^{-\lambda x}dx $
- $ M_X(jw) = \lambda \int_{0}^{\infty} e^{jwx} e^{-\lambda x}dx $
- $ M_X(jw) = \lambda \int_{0}^{\infty} e^{(jw-\lambda)x}dx $
- $ M_X(jw) = \lambda \int_{0}^{\infty} e^{-(\lambda-jw)x}dx $
- $ M_X(jw) = \lambda \frac {1}{-(\lambda-jw)}(e^{-(\lambda-jw)\infty}-e^{-(\lambda-jw)0}) $
- $ M_X(jw) = \lambda \frac {1}{-(\lambda-jw)}(e^{-\infty}-e^{0}) $
- $ M_X(jw) = \lambda \frac {1}{-(\lambda-jw)}(0-1) $
- $ M_X(jw) = \frac {\lambda}{\lambda-jw} $
- $ M_X(s) = \frac {\lambda}{\lambda-s} $
- Instructor's comment: Be careful. In general, you can't obtain the Laplace transform by simply replacing $ j\omega $ by s. In fact, the corresponding integral for s diverges for some values of s. -pm
Answer 3
Write it here.