Practice Problem: Obtain the moment generating function for an exponential random variable


Let X be an exponential random variable. Recall that the pdf of an exponential random variable is given by


$ \ f_X(x)= \lambda e^{-\lambda x}, \text{ for }x\geq 0 . $

Obtain the moment generating function MX(s) of X.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Hint:

$ M_X(s)=E[e^{sX}] = \int e^{sx} f_{X}(x)dx $
get an answer for s < λ
note that the integrating range of x starts from 0

Answer 2

$ M_X(jw) = E[e^{jwx}] $
$ E[e^{jwx}] = \int e^{jwx} f_{X}(x)dx \text{ For } x \geq 0 $
$ M_X(jw) = \int_{0}^{\infty} e^{jwx} \lambda e^{-\lambda x}dx $
$ M_X(jw) = \lambda \int_{0}^{\infty} e^{jwx} e^{-\lambda x}dx $
$ M_X(jw) = \lambda \int_{0}^{\infty} e^{(jw-\lambda)x}dx $
$ M_X(jw) = \lambda \int_{0}^{\infty} e^{-(\lambda-jw)x}dx $
$ M_X(jw) = \lambda \frac {1}{-(\lambda-jw)}(e^{-(\lambda-jw)\infty}-e^{-(\lambda-jw)0}) $
$ M_X(jw) = \lambda \frac {1}{-(\lambda-jw)}(e^{-\infty}-e^{0}) $
$ M_X(jw) = \lambda \frac {1}{-(\lambda-jw)}(0-1) $
$ M_X(jw) = \frac {\lambda}{\lambda-jw} $
$ M_X(s) = \frac {\lambda}{\lambda-s} $


Instructor's comment: Be careful. In general, you can't obtain the Laplace transform by simply replacing $ j\omega $ by s. In fact, the corresponding integral for s diverges for some values of s. -pm

Answer 3

Write it here.


Back to ECE302 Spring 2013 Prof. Boutin

Back to ECE302

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison