Lecture 40 Blog, ECE302 Spring 2013, Prof. Boutin
Wednesday April 17, 2013 (Week 15) - See Course Outline.
(Other blogs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
In Lecture 40, we showed precisely in what sense the Binomial counting process converges to the Poisson random process. To re-emphasize this relationship once again, we looked at the Taylor series expansion of the pmf of the random variables parameterizing the Poisson random process and we checked that the first terms of the expansion do give us the pmf for the Binomial counting. We then moved on to the last topic of the course, "LTI systems and Random Processes". After a short introduction to the topic, we covered the definition of a stationary random process.
Action items for students (to be completed before next lecture)
- Solve problems 9.38, 9.40, 9.42, 9.43 in the textbook. This completes homework 7. Please staple all your solutions together and hand those in at the next lecture (Friday).
Previous: Lecture 39
Next: Lecture 41