Contents
Instructions
Homework 3 can be downloaded here on the ECE 302 course website.
Problem 1: Monte Hall, twisted
http://nostalgia.wikipedia.org/wiki/Monty_Hall_problem Explains the original Monty Hall problem and then the problem considering two contestants are involved.
HW3.1.a Zhongtian Wang_ECE302Fall2008sanghavi
HW3.1.a Shao-Fu Shih_ECE302Fall2008sanghavi
HW3.1.a Beau "ballah-fo-life" Morrison_ECE302Fall2008sanghavi
HW3.1.a Suan-Aik Yeo_ECE302Fall2008sanghavi
HW3.1.a Chris Wacnik_ECE302Fall2008sanghavi
HW3.1.a Dan Van Cleve_ECE302Fall2008sanghavi
HW3.1.a Joe Gutierrez_ECE302Fall2008sanghavi
HW3.1.b Zhongtian Wang & Jonathan Morales_ECE302Fall2008sanghavi
HW 3.1b Albert Lai_ECE302Fall2008sanghavi
HW3.1.b Spencer Mitchell_ECE302Fall2008sanghavi
HW 3.1b Sahil Khosla_ECE302Fall2008sanghavi
HW 3.1b Virgil Hsieh_ECE302Fall2008sanghavi
HW 3.1b Ben Wurtz_ECE302Fall2008sanghavi
HW 3.1b Vivek Ravi_ECE302Fall2008sanghavi
Problem 1: Monte Hall, twisted
HW3.1.b Anand Gautam_ECE302Fall2008sanghavi
HW3.1.b Steve Streeter_ECE302Fall2008sanghavi
HW3.1.b Kushagra Kapoor_ECE302Fall2008sanghavi
HW3.1.b Anthony O'Brien_ECE302Fall2008sanghavi
HW3.1.b Seraj Dosenbach_ECE302Fall2008sanghavi
HW3.1b Priyanka Savkar_ECE302Fall2008sanghavi
Problem 2: A Bayesian Proof
HW3.2 - Steve Anderson_ECE302Fall2008sanghavi
HW3.2 Tiffany Sukwanto_ECE302Fall2008sanghavi
HW3.2 Sang Mo Je_ECE302Fall2008sanghavi
HW3.2 Emir Kavurmacioglu_ECE302Fall2008sanghavi
HW3.2 Sourabh Ranka_ECE302Fall2008sanghavi
Problem 3: Internet Outage
HW3.3 Gregory Pajot_ECE302Fall2008sanghavi
HW3.3 Monsu Mathew_ECE302Fall2008sanghavi
HW3.3 Joe Romine_ECE302Fall2008sanghavi
HW3.3 Katie Pekkarinen_ECE302Fall2008sanghavi
HW3.3 Jayanth Athreya_ECE302Fall2008sanghavi
HW3.3 Steven Millies_ECE302Fall2008sanghavi
Problem 4: Colored Die
HW3.4.a Seraj Dosenbach_ECE302Fall2008sanghavi
HW3.4.a Shweta Saxena_ECE302Fall2008sanghavi
HW3.4.a Joshua Long_ECE302Fall2008sanghavi
HW3.4.a Eric Zarowny_ECE302Fall2008sanghavi
HW3.1.b Anand Gautam_ECE302Fall2008sanghavi For part a, the chance of drawing each die is independent of the other one. So the probability of red on the first roll is just the product of the chance of drawing a red face on each die. hope that makes sense.
HW3.4.b Joon Young Kim_ECE302Fall2008sanghavi
HW3.4.b Jared McNealis_ECE302Fall2008sanghavi
HW3.4.b Seraj Dosenbach_ECE302Fall2008sanghavi
HW 3.4.c Junzhe Geng_ECE302Fall2008sanghavi In this problem, we are asked to find the possibility of selecting a 3-red-face die when the first three rolls all give red faces. which is to find P(3-R-F|3R) according to formula: P(3-R-F|3R)=P(3-R-F n 3R)/P(3R), P(3-R-F n 3R) is easy to find. to find P(3R), we need to calculate each cases: selected 1-R-F(one red face), 2-R-F, or 3-R-F thus, P(3R)=P(3R n 1-R-F)+P(3R n 2-R-F)+P(3R n 3-R-F) each of those are not hard to find. my final result was 3/4. Hope it is right.
HW3.4 Aishwar Sabesan _ECE302Fall2008sanghavi
HW3.4c AJ Hartnett_ECE302Fall2008sanghavi
HW3.4a Jaewoo Choi_ECE302Fall2008sanghavi
HW3.4c Patrick M. Avery Jr._ECE302Fall2008sanghavi
Problem 5: Fuzzy Logic
3.5 - Nicholas Browdues_ECE302Fall2008sanghavi
3.5 - Divyanshu Kamboj_ECE302Fall2008sanghavi
3.5 - Katie Pekkarinen_ECE302Fall2008sanghavi
3.5 - Caleb Ayew-ew_ECE302Fall2008sanghavi
3.5 - Brian Thomas_ECE302Fall2008sanghavi
3.5 - Justin Mauck_ECE302Fall2008sanghavi