(Problem 2: A Bayesian Proof)
(Problem 1: Monte Hall, twisted)
Line 7: Line 7:
 
Explains the original Monty Hall problem and then the problem considering two contestants are involved.
 
Explains the original Monty Hall problem and then the problem considering two contestants are involved.
  
 +
Consider the following twist on the monty hall problem (see video above to recollect):
 +
 +
There are 3 doors, behind one of which there is a car, and the remaining two have goats. You and a friend each pick a door. One of you will have definitely picked a goat. The host then opens one of the two chosen doors (i.e. yours or your friend's), shows a goat and kicks that person out (if both of you have chosen goats, he opens one door at random). The other person is given the option of staying put, or switching to the one remaining door.
 +
 +
*(a) When originally picking your doors, should you choose your door first, or let your friend go first? Does it make a difference?
 
[[HW3.1.a Zhongtian Wang_ECE302Fall2008sanghavi]]
 
[[HW3.1.a Zhongtian Wang_ECE302Fall2008sanghavi]]
  
Line 22: Line 27:
  
 
[[HW3.1.a Joe Gutierrez_ECE302Fall2008sanghavi]]
 
[[HW3.1.a Joe Gutierrez_ECE302Fall2008sanghavi]]
 +
 +
*(b) It turns out that the host has just eliminated your friend. What should you do? (i.e. stick with your original door, or switch?) What are the probabilities of winning in each case?
  
 
[[HW3.1.b Zhongtian Wang & Jonathan Morales_ECE302Fall2008sanghavi]]
 
[[HW3.1.b Zhongtian Wang & Jonathan Morales_ECE302Fall2008sanghavi]]

Revision as of 07:07, 18 September 2008

Instructions

Homework 3 can be downloaded here on the ECE 302 course website.

Problem 1: Monte Hall, twisted

http://nostalgia.wikipedia.org/wiki/Monty_Hall_problem Explains the original Monty Hall problem and then the problem considering two contestants are involved.

Consider the following twist on the monty hall problem (see video above to recollect):

There are 3 doors, behind one of which there is a car, and the remaining two have goats. You and a friend each pick a door. One of you will have definitely picked a goat. The host then opens one of the two chosen doors (i.e. yours or your friend's), shows a goat and kicks that person out (if both of you have chosen goats, he opens one door at random). The other person is given the option of staying put, or switching to the one remaining door.

  • (a) When originally picking your doors, should you choose your door first, or let your friend go first? Does it make a difference?

HW3.1.a Zhongtian Wang_ECE302Fall2008sanghavi

HW3.1.a Shao-Fu Shih_ECE302Fall2008sanghavi

HW3.1.a Beau "ballah-fo-life" Morrison_ECE302Fall2008sanghavi

HW3.1.a Suan-Aik Yeo_ECE302Fall2008sanghavi

HW3.1.a Chris Wacnik_ECE302Fall2008sanghavi

HW3.1.a Chris Cadwallader_ECE302Fall2008sanghavi

HW3.1.a Dan Van Cleve_ECE302Fall2008sanghavi

HW3.1.a Joe Gutierrez_ECE302Fall2008sanghavi

  • (b) It turns out that the host has just eliminated your friend. What should you do? (i.e. stick with your original door, or switch?) What are the probabilities of winning in each case?

HW3.1.b Zhongtian Wang & Jonathan Morales_ECE302Fall2008sanghavi

HW 3.1b Albert Lai_ECE302Fall2008sanghavi

HW3.1.b Spencer Mitchell_ECE302Fall2008sanghavi

HW 3.1b Sahil Khosla_ECE302Fall2008sanghavi

HW 3.1b Virgil Hsieh_ECE302Fall2008sanghavi

HW 3.1b Ben Wurtz_ECE302Fall2008sanghavi

HW 3.1b Vivek Ravi_ECE302Fall2008sanghavi

HW3.1.b Anand Gautam_ECE302Fall2008sanghavi

HW3.1.b Steve Streeter_ECE302Fall2008sanghavi

HW3.1.b Kushagra Kapoor_ECE302Fall2008sanghavi

HW3.1.b Anthony O'Brien_ECE302Fall2008sanghavi

HW3.1.b Seraj Dosenbach_ECE302Fall2008sanghavi

HW3.1b Priyanka Savkar_ECE302Fall2008sanghavi

HW3.1.b Emily Blount_ECE302Fall2008sanghavi

Problem 2: A Bayesian Proof

HW3.2 - Steve Anderson_ECE302Fall2008sanghavi

HW3.2 Tiffany Sukwanto_ECE302Fall2008sanghavi

HW3.2 Sang Mo Je_ECE302Fall2008sanghavi

HW3.2 Emir Kavurmacioglu_ECE302Fall2008sanghavi

HW3.2 Phil Cannon_ECE302Fall2008sanghavi

HW3.2 Sourabh Ranka_ECE302Fall2008sanghavi

Problem 3: Internet Outage

HW3.3 Gregory Pajot_ECE302Fall2008sanghavi

HW3.3 Monsu Mathew_ECE302Fall2008sanghavi

HW3.3 Joe Romine_ECE302Fall2008sanghavi

HW3.3 Katie Pekkarinen_ECE302Fall2008sanghavi

HW3.3 Jayanth Athreya_ECE302Fall2008sanghavi

HW3.3 Steven Millies_ECE302Fall2008sanghavi

HW3.3 Carlos Leon_ECE302Fall2008sanghavi

Problem 4: Colored Die

HW3.4.a Seraj Dosenbach_ECE302Fall2008sanghavi

HW3.4.a Shweta Saxena_ECE302Fall2008sanghavi

HW3.4.a Joshua Long_ECE302Fall2008sanghavi

HW3.4.a Eric Zarowny_ECE302Fall2008sanghavi

HW3.4.a Anand Gautam_ECE302Fall2008sanghavi

HW3.4.b Joon Young Kim_ECE302Fall2008sanghavi

HW3.4.b Jared McNealis_ECE302Fall2008sanghavi

HW3.4.b Seraj Dosenbach_ECE302Fall2008sanghavi

HW 3.4.c Junzhe Geng_ECE302Fall2008sanghavi

HW3.4 Aishwar Sabesan _ECE302Fall2008sanghavi

HW3.4c AJ Hartnett_ECE302Fall2008sanghavi

HW3.4a Jaewoo Choi_ECE302Fall2008sanghavi

HW3.4c Patrick M. Avery Jr._ECE302Fall2008sanghavi

Problem 5: Fuzzy Logic

3.5 - Nicholas Browdues_ECE302Fall2008sanghavi

3.5 - Divyanshu Kamboj_ECE302Fall2008sanghavi

3.5 - Katie Pekkarinen_ECE302Fall2008sanghavi

3.5 - Caleb Ayew-ew_ECE302Fall2008sanghavi

3.5 - Brian Thomas_ECE302Fall2008sanghavi

3.5 - Justin Mauck_ECE302Fall2008sanghavi

Extras

Monty Hall in Action - Henry Michl_ECE302Fall2008sanghavi

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva