Create the page "DT" on this wiki! See also the search results found.
Page title matches
- [[Discrete-time_Fourier_transform_info|Discrete-time (DT) Fourier Transforms]] Pairs and Properties ! colspan="2" style="background: #eee;" | DT Fourier transform and its Inverse7 KB (1,037 words) - 20:05, 4 March 2015
- '''Discrete Time (DT) Signals''' ...time signal there will be time periods of n where you do not have a value. DT signals are represented using the form <math>x[n]</math>. Discrete signals3 KB (516 words) - 16:03, 2 December 2018
-
2 KB (263 words) - 10:13, 22 January 2018
- =CT and DT Convolution Examples= ...course, it is important to know how to do convolutions in both the CT and DT world. Sometimes there may be some confusion about how to deal with certain5 KB (985 words) - 11:38, 30 November 2018
- ..._\infty</math> and the power <math class="inline">P_\infty</math> of this DT signal:1 KB (196 words) - 18:39, 1 December 2018
Page text matches
- <math>=\frac{1}{2}\int_0^{2\pi}(1+cos(2t))dt</math> <math>=\frac{1}{2\pi-0}\frac{1}{2}\int_0^{2\pi}(1+cos(2t))dt</math>1,007 B (151 words) - 12:45, 24 February 2015
- <math>E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt</math> ...>P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt)</math>4 KB (734 words) - 14:54, 25 February 2015
- <math>E\infty=\int_{-\infty}^\infty |x(t)|^2\,dt</math> <math>E\infty=\int_{-\infty}^\infty |\sqrt{t}|^2\,dt=\int_0^\infty t\,dt</math> (due to sqrt limiting to positive Real numbers)1 KB (261 words) - 14:09, 25 February 2015
- ...nt_{-\infty}^{\infty}|t| dt = \int_{-\infty}^{0}-t dt+\int_{0}^{\infty} t dt=\infty+\infty=\infty.</math> ...\rightarrow \infty} \frac{1}{2T}\left( \int_{-T}^{0} -t dt+\int_{0}^{T} t dt\right) =limit_{T\rightarrow \infty} \frac{1}{2T}\left( \frac{T^2}{2}+\frac{6 KB (975 words) - 14:35, 25 February 2015
- <math>E\infty=\int_{-\infty}^\infty |2tu(t)|dt</math> <span style="color:blue"> (*) </span> <math>P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T|2tu(t)|dt</math>2 KB (408 words) - 16:20, 25 February 2015
- <math>E_\infty = \int_{-\infty}^\infty |tu(t)|^2\,dt = \int_{0}^\infty t^2\,dt=\infty</math> ...t_{-T}^T |tu(t)|^2\,dt = lim_{T \to \infty} \ \frac{1}{2T} \int_{0}^T t^2\,dt =\frac{\infty}{\infty}=1</math>1 KB (241 words) - 16:06, 25 February 2015
- <math>E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt</math> <math>E_{\infty}=\int_{-\infty}^\infty |2t^2|^2\,dt</math>2 KB (415 words) - 16:05, 25 February 2015
- <math>E_\infty = \int_{-\infty}^\infty |5sin(t)|^2\,dt</math> <math>E_\infty = \int_{-\infty}^\infty 25sin(t)^2 \,dt</math>3 KB (432 words) - 16:55, 25 February 2015
- **[[Table DT Fourier Transforms|Discrete-time Fourier Transform Pairs and Properties]] (3 KB (294 words) - 14:44, 12 March 2015
- |<math>F(s)=\int_{-\infty}^\infty f(t) e^{-st}dt, \ s\in {\mathbb C} \ </math> | <math>u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}}</math>29 KB (4,474 words) - 12:58, 22 May 2015
- ...info)]] CT signal energy ||<math>E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt </math> ...\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt </math>2 KB (307 words) - 13:54, 25 February 2015
- ...l{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt</math> | <math>\frac{d^{n}x(t)}{dt^{n}}</math>8 KB (1,130 words) - 10:45, 24 August 2016
- | align="right" style="padding-right: 1em;" | DT delta function || <math>\delta[n]=\left\{ \begin{array}{ll}1, & \text{ for | align="right" style="padding-right: 1em;" | DT unit step function || <math>u[n]=\left\{ \begin{array}{ll}1, & \text{ for }2 KB (339 words) - 10:11, 18 September 2015
- | <math>X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math> | align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform5 KB (687 words) - 20:01, 4 March 2015
- [[Discrete-time_Fourier_transform_info|Discrete-time (DT) Fourier Transforms]] Pairs and Properties ! colspan="2" style="background: #eee;" | DT Fourier transform and its Inverse7 KB (1,037 words) - 20:05, 4 March 2015
- <math>E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt </math>1 KB (207 words) - 15:04, 25 February 2015
- ...\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt </math>1 KB (220 words) - 09:49, 21 April 2015
- p^{\prime}(t)=\frac{d}{dt}p(t)=\left( \frac{d}{dt}x(t),\frac{d}{dt}y(t)\right). \| p^{\prime}(t)\| =\sqrt{\left( \frac{d}{dt}x(t)\right)^2+\left( \frac{d}{dt}y(t)\right)^2}10 KB (1,752 words) - 16:02, 14 May 2015
- ...| Below <math>x[n]</math>, <math>x_1[n]</math> and <math>x_2[n]</math> are DT signals with z-transforms <math>X(z)</math>, <math>X_1(Z)</math>, <math>X_27 KB (1,018 words) - 07:55, 6 March 2015
- E_{\infty}&=\lim_{T\rightarrow \infty}\int_{-T}^T |e^{(2jt)}|^2 dt \quad {\color{OliveGreen}\surd}\\ &= \lim_{T\rightarrow \infty}\int_{-T}^T |(cos(2t) + j*sin(2t))|^2 dt \quad {\color{OliveGreen}\text{ (You could skip this step.)}}\\4 KB (595 words) - 10:01, 21 April 2015
- ...agnitude complex DT signals ECE301S11|Compute the magnitude of these three DT signals]] *Signal Power and Energy in DT12 KB (1,768 words) - 09:25, 22 January 2018
- '''Discrete Time (DT) Signals''' ...time signal there will be time periods of n where you do not have a value. DT signals are represented using the form <math>x[n]</math>. Discrete signals3 KB (516 words) - 16:03, 2 December 2018
- ...ce DTFT computation cosine ECE438F11|What is the Fourier transform of this DT cosine?]] ...tice DTFT computation rect ECE438F11|What is the Fourier transform of this DT rect function?]]2 KB (290 words) - 13:47, 1 May 2015
- ...ce DTFT computation cosine ECE438F11|What is the Fourier transform of this DT cosine?]] ...tice DTFT computation rect ECE438F11|What is the Fourier transform of this DT rect function?]]6 KB (801 words) - 21:04, 19 April 2015
- | [[CT_and_DT_Convolution_Examples| CT and DT Convolution Examples]] ..._a_CT_sinusoidal_signal|CT Cosine wave]] [[Computation_of_Energy_and_Power|DT Exponential signal]]4 KB (534 words) - 18:10, 4 December 2018
- ...ty}{f(g(t)) \delta (t) dt} = f(g(t=0)) \int_{-\infty}^{+\infty}{\delta (t) dt} \text{ii) } \int_{-\infty}^{+\infty}{\delta (\alpha t) dt} = \int_{-\infty}^{+\infty}{\delta (u) \frac{du}{|\alpha|}} = \frac{1}{|\al17 KB (2,783 words) - 00:51, 31 March 2015
- <math>F(x)=\int_{0}^{\infty} f(t)x^{t} \ dt \ \mid \ f(t) \in \R \ \ \ \forall \ t \in (0,\infty)</math> <math>F(e^{ln(x)}) = F(x)=\int_{0}^{\infty} f(t)e^{ln(x)t} \ dt</math>3 KB (512 words) - 14:14, 1 May 2016
- *Find fundamental period of DT signal: 1.11 *Even and odd parts of DT signals: 1.24b817 B (113 words) - 09:57, 13 June 2016
- <math> v_1(t) = \pm \ L_1\frac{di_1}{dt} \pm \ M\frac{di_2}{dt} \ \ \ \ \ (17.4a \ \ [1])</math> <math> v_2(t) = \pm \ L_2\frac{di_2}{dt} \pm \ M\frac{di_1}{dt} \ \ \ \ \ (17.4b \ \ [1])</math>3 KB (474 words) - 14:17, 1 May 2016
- ...stead of using the Riemann integral approach like we implicitly did in the DT case. ...uickly decaying impulse response are held for a time step of 1 each in the DT case, while those values are only held for an infinitesimal time in the CT6 KB (991 words) - 14:18, 1 May 2016
- **[[Lecture1 ECE301Fall2008mboutin|Lecture 1]]: Intro; Example of DT signal (text) and system (enigma machine). **[[Lecture19 ECE301Fall2008mboutin|Lecture 19]]: TA Example Session w/ DT Fourier Transforms and inverses3 KB (328 words) - 16:57, 30 November 2018
- Compute the compute the z-transform (including the ROC) of the following DT signal:8 KB (1,313 words) - 14:19, 1 May 2016
- *[[CT_DT_Fourier_transform_ECE438F10|Summary of CT and DT Fourier transform]] ...udent_summary_CT_DT_Fourier_transform_ECE438F09| Student summary of CT and DT Fourier transform]]4 KB (471 words) - 18:34, 9 February 2015
- ...e able to calculate the Fourier series coefficients of a period CT signal (DT Fourier series will NOT be on the exam). (3.28a(subparts abc), 3.22, 3.31,6 KB (765 words) - 12:35, 4 August 2016
- \epsilon_0 = \int_{R_1} f(t|\omega_0)dt = \int_{z_c}^{\infty}\phi(z;0,1)dz \leq .05 \epsilon_0 = \int_{R_1} f(t|\omega_0)dt = \int_{z_c}^{\infty}\phi(z;0,1)dz = .0510 KB (793 words) - 09:46, 22 January 2015
- **[[Table DT Fourier Transforms|DTFT]] | Something related to CT or DT Fourier transform13 KB (1,944 words) - 15:51, 13 March 2015
- ...htarrow F_n = \frac{1}{T}\int\limits_{-T/2}^{T/2}P_T(t)e^{jn\cdot 2\pi t/T}dt</math>4 KB (610 words) - 17:55, 16 March 2015
- ...l{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt</math> | <math>X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>4 KB (613 words) - 17:51, 16 March 2015
- ...\qquad \qquad \qquad X(f)=\int\limits_{-\infty}^{\infty}x(t)e^{-j2\pi ft} dt </math> <math>X(2\pi f)=\int\limits_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt </math>3 KB (512 words) - 08:50, 14 March 2015
- <math> {x}_{1}[n] </math> is a DT sampled signal of <math> {x}_{c}(t) </math> with sampling period <math> {T}3 KB (542 words) - 09:00, 14 March 2015
- <math> \frac{\lambda(x)}{\lambda(0)} = e^{-\int_0^x \mu(t)dt}</math> <br /> \int_0^x \mu(t)dt &= -ln(\frac{\lambda_x}{\lambda(0)})\\7 KB (1,072 words) - 18:25, 9 February 2015
- <math>f(t) = \frac{d\phi (t)}{dt}</math><br /> \frac{d\phi(t)}{dt} &= LM(x,y,t) \\14 KB (2,487 words) - 18:26, 9 February 2015
- *Week 1-2: CT and DT Fourier Transforms == Part 2 (week 9-14): DT Systems and Applications ==10 KB (1,356 words) - 12:19, 19 October 2015
- ...t e^{-i\omega t}dt=\alpha\int_{0}^{\infty}e^{-\left(\alpha+i\omega\right)t}dt=\alpha\frac{e^{-\left(\alpha+i\omega\right)t}}{-\left(\alpha+i\omega\right)6 KB (1,002 words) - 00:38, 10 March 2015
- ...ass="inline">isf_{\mathbf{T}_{k}}\left(t\right)=\frac{dF_{\mathbf{T}_{k}}}{dt}=-\sum_{j=0}^{k-1}\frac{\left(-\lambda\right)e^{-\lambda t}\cdot\left(\lamb4 KB (679 words) - 00:58, 10 March 2015
- ...{-\infty}^{\infty}\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)h\left(t\right)dt=\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)H\left(0\right)\Rightarrow m_{\ma5 KB (939 words) - 09:37, 10 March 2015
- |<math>F(s)=\int_{0}^\infty f(t) e^{-st}dt, \ s\in {\mathbb C} \ </math> | <math>u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}}</math>29 KB (4,417 words) - 14:53, 12 March 2015
- ...^T | x(t) |^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T 4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} 4t \Big| ^T _{-T} = \lim_{T\rig ...|^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-\infty}^\infty 4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \infty= \frac{\infty}{\infty}=12 KB (290 words) - 14:29, 21 April 2015
- **[[Table DT Fourier Transforms|DTFT]] | Something related to CT or DT Fourier transform6 KB (845 words) - 14:37, 4 November 2016
- It was observed that this sampling yields a DT signal that also sounds like a middle C. Perhaps the most confusing part of3 KB (487 words) - 10:09, 2 September 2015