Problem

Compute the energy $ E_\infty $ and the power $ P_\infty $ of this DT signal:


$ x[n] = \left(\frac{5}{6}\right)^n u[n] $



Solution

$  x[n] = \left\{ \begin{array}{ll}  \left(\frac{5}{6}\right)^n & \text{ if } n\geq 0,\\  0 & \text{else}. \end{array} \right.  $


Norm of a signal: $ \begin{align} \left|\left(\frac{5}{6}\right)^n u[n]\right| = \left(\frac{5}{6}\right)^n \\ \end{align} $


$ \begin{align} E_{\infty}&=\sum_{n=0}^N \left|\left(\frac{5}{6}\right)^n\right|^2 \\ &= \sum_{n=0}^N \left(\frac{5}{6}\right)^{2n} \\ &= \sum_{n=0}^N \left(\frac{25}{36}\right)^{n} \\ &= \frac{1}{1-\frac{25}{36}} \\ &= \frac{36}{11} \\ \end{align} $


$ E_{\infty} = \frac{36}{11} $.



$ \begin{align} P_{\infty} &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N \left|\left(\frac{5}{6}\right)^n\right|^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \times \left(\frac{25}{36}\right)^n \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \times \frac{1}{1-\frac{25}{36}} \\ &= \lim_{N\rightarrow \infty} \left({ \frac{\frac{36}{11}}{2N+1}} \right) \\ &= 0 \\ \end{align} $


$ P_{\infty} = 0 $


Conclusion: $ E_{\infty} = \frac{36}{11} $, $ P_{\infty} = 0 \\ $

When $ E_{\infty} = \text{finite number} $, $ P_{\infty} = 0 $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010