Problem

Calculate the energy $ E_\infty $ and the average power $ P_\infty $ for the CT signal $ x(t)=2t^2 $


Solution 1

$ E_{\infty} $

$ E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt $

$ E_{\infty}=\int_{-\infty}^\infty |2t^2|^2\,dt $

$ E_{\infty}=2\int_{-\infty}^\infty t^4\,dt $

$ E_{\infty}=\frac{2}{5}t^5|_{-\infty}^\infty $

$ E_{\infty}=\infty $


$ P_{\infty} $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{T}\int_{-T}^{T}t^4\,dt $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{5T}t^5|_{-T}^{T} $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{5T}[T^5 - (-T^5)] $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{2T^5}{5T} $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{2T^4}{5} $

$ P_{\infty}=\infty $

Both of your final answer are correct, but there are small mistakes (constant multipliers) in your computation.


Solution 2

$ E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt =\int_{-\infty}^\infty |2t^2|^2\,dt= 4\int_{-\infty}^\infty t^4\,dt =\infty $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt= \lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt =\lim_{T \to \infty} \ \frac{2}{T}\int_{-T}^{T}t^4\,dt =\lim_{T \to \infty} \ \frac{2}{5T}t^5|_{-T}^{T}=\lim_{T \to \infty} \ \frac{2}{5T}[T^5 - (-T^5)] =\lim_{T \to \infty} \ \frac{4T^4}{5}=\infty $


Looks pretty good!


Solution 3

$ E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt =\int_{-\infty}^\infty |2t^2|^2\,dt= 4\int_{-\infty}^\infty t^4\,dt = 4 \frac{t^5}{5}=\infty. $

$ P_{\infty}=\lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\,dt= \lim_{T \to \infty} \ \frac{1}{2T}\int_{-T}^{T}|2t^2|^2\,dt =\lim_{T \to \infty} \ \frac{2}{T}\int_{-T}^{T}t^4\,dt =\frac{\infty}{\infty}=1. $


The energy computation looks good. But in the power computation you distributed the limit too early and so your final answer is wrong.


Back to CT signal energy page

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva