Page title matches

Page text matches

  • Bayes' decision rule creates an objective function which minimizes the probability of error (misclassification). This method a Refers to the problem caused by exponential growth of hypervolume as a function of dimensionality. This term was coined by Richard Bellman in 1961.
    31 KB (4,832 words) - 17:13, 22 October 2010
  • [[Lecture 13 - Kernel function for SVMs and ANNs introduction_Old Kiwi|13]], (Continued from [[Lecture 13 - Kernel function for SVMs and ANNs introduction_Old Kiwi]])
    13 KB (2,073 words) - 07:39, 17 January 2013
  • ...t's simplify things. Each given differential equation can be written as a function of y. For instance, the differential equation ...d c. In this section, we are only considering differential equations whose characteristic equations have distinct, real roots. Let's call those roots r<sub>1</sub> a
    3 KB (527 words) - 17:10, 26 October 2009
  • ...he Characteristic function of F_T(\omega) in a simple way (i.e. using prod function together with integrate). Other than that, I'll list the packages/functions ...st type “edit cov” in Matlab and then copy the whole function as a new function to your freemath program; I don’t know if it’s acceptable or not but of
    4 KB (596 words) - 12:17, 12 November 2010
  • Bayes' decision rule creates an objective function which minimizes the probability of error (misclassification). This method a Refers to the problem caused by exponential growth of hypervolume as a function of dimensionality. This term was coined by Richard Bellman in 1961.
    31 KB (4,787 words) - 17:21, 22 October 2010
  • According to the characteristic function of Poisson random variable
    3 KB (557 words) - 11:11, 25 September 2013
  • ...ction)|CDF (Cumulative Distribution Function) and PDF (Probability Density Function)]] *[[ECE 600 Prerequisites Joint Characteristic Function|Joint Characteristic Function]]
    1 KB (139 words) - 12:13, 16 November 2010
  • It is about the time until success in Poisson process. It has the characteristic of memoryless. Moment generating function
    5 KB (843 words) - 10:27, 30 November 2010
  • 1.8.5 Characteristic function
    2 KB (305 words) - 10:15, 17 November 2010
  • ='''1.11 Joint Characteristic Function'''= The joint characteristic function of two joint-distributed RVs <math class="inline">\mathbf{X}</math> and <m
    4 KB (711 words) - 10:32, 30 November 2010
  • ...ass="inline">\mathbf{X}\left(t,\omega\right)</math> that is called sample function. ...="inline">\omega_{0}\in\mathcal{S}</math> is a function of time or sample function.
    16 KB (2,732 words) - 10:47, 30 November 2010
  • ...c function)|Two jointly distributed random variables (Joint characteristic function)]]
    1 KB (188 words) - 10:57, 30 November 2010
  • ...th> be a random variable with mean 2 , variance 8 , and moment generating function <math class="inline">\phi_{\mathbf{X}}\left(s\right)=E\left\{ e^{s\mathbf{X Find the characteristic function <math class="inline">\Phi\left(\omega\right)</math> of an exponentially di
    22 KB (3,780 words) - 06:18, 1 December 2010
  • (a) Find the probability mass function (pmf) of <math class="inline">\mathbf{M}</math> . This is the characteristic function of Binomial with probability pr .
    12 KB (2,205 words) - 06:20, 1 December 2010
  • ...e^{-A\left|x\right|}\text{ where }A>0.</math> Determine its characteristic function. ...If <math class="inline">R\left(\tau\right)</math> is the autocorrelation function of <math class="inline">\mathbf{X}\left(t\right)</math> , prove the followi
    7 KB (1,192 words) - 07:22, 27 June 2012
  • Find the probability mass function (pmf) of <math class="inline">\mathbf{Z}</math> . Find the conditional probability mass function (pmf) of <math class="inline">\mathbf{X}</math> conditional on the event <
    10 KB (1,827 words) - 07:33, 27 June 2012
  • ...he lower left corner of the unit square). Find the cumulative distribution function (cdf) <math class="inline">F_{\mathbf{X}}\left(x\right)=P\left(\left\{ \mat which is the characteristic function of a Gaussian random variable with mean <math class="inline">a\mu_{\mathbf{
    10 KB (1,652 words) - 07:32, 27 June 2012
  • ...class="inline">\left|\rho\right|<1</math> . Find the joint characteristic function <math class="inline">E\left[e^{i\left(h_{1}\mathbf{X}+h_{2}\mathbf{Y}\right • Now, we can get the joint characteristic function <math class="inline">\Phi_{\mathbf{X}\mathbf{Y}}\left(\omega_{1},\omega_{2}
    6 KB (916 words) - 07:26, 27 June 2012
  • Find the probability density function of <math class="inline">\mathbf{Y}=\max\left\{ \mathbf{X}_{1},\cdots,\mathb Find the probability density function of <math class="inline">\mathbf{Z}=\min\left\{ \mathbf{X}_{1},\cdots,\mathb
    14 KB (2,358 words) - 07:31, 27 June 2012
  • ...X}</math> is a binomial distributed random variable with probability mass function (pmf) given by <math class="inline">p_{n}\left(k\right)=\left(\begin{array} ...line">\mathbf{X}</math> . (You must show how you derive the characteristic function.)
    10 KB (1,754 words) - 07:30, 27 June 2012
  • Find the characteristic function of <math class="inline">\mathbf{X}_{n}</math> . ...t(1-\left(\frac{1}{2}\right)^{2n}\right)</math> . Hence the characteristic function of <math class="inline">\mathbf{X}_{n}</math> is <math class="inline">\Phi
    14 KB (2,439 words) - 07:29, 27 June 2012
  • ...function <math class="inline">\mu\left(t\right)</math> and autocovariance function <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> . ...expression for the <math class="inline">n</math> -th order characteristic function of <math class="inline">\mathbf{X}\left(t\right)</math> in terms of <math
    10 KB (1,636 words) - 07:29, 27 June 2012
  • According to the characteristic function of Poisson random variable
    3 KB (532 words) - 10:58, 30 November 2010
  • ...hbf{Z}</math> is a Guassian random variable, then it has a characteristic function of the form ...XY}}\left(\omega_{1},\omega_{2}\right)</math> is the joint characteristic function of <math class="inline">\mathbf{X}</math> and <math class="inline">\mathbf
    3 KB (504 words) - 11:00, 30 November 2010
  • ...ass="inline">\mathbf{X}</math> be a random variable with probability mass function (a) Find the characteristic function of <math class="inline">\mathbf{X}</math> .
    5 KB (793 words) - 11:10, 30 November 2010
  • ...}</math> as <math>n\rightarrow\infty</math> , which is the characteristic function of a Poisson random variable with mean <math>\lambda</math> . which is the characteristic function of Poisson random variable with mean <math>\lambda</math> .
    3 KB (470 words) - 12:02, 23 November 2010
  • ...ath class="inline">n\rightarrow\infty</math> , which is the characteristic function of a Poisson random variable with mean <math class="inline">\lambda</math> which is the characteristic function of Poisson random variable with mean <math class="inline">\lambda</math> .
    3 KB (539 words) - 11:14, 30 November 2010
  • ...sequence of i.i.d. Gaussian random variables, each having characteristic function • Probability generating function of <math class="inline">\mathbf{N}</math> is <math class="inline">P_{\math
    2 KB (426 words) - 06:15, 1 December 2010
  • | Probability density function <math> f_{x}(x) </math> | Characteristic function <math> \Phi_{x}(\omega)</math>
    6 KB (851 words) - 14:34, 23 April 2013
  • ...probability_normalization_ECE302S13Boutin|Normalizing the probability mass function of a discrete random variable]] ...on_gaussian_normalization_ECE302S13Boutin|Normalizing the probability mass function of a Gaussian random variable]]
    7 KB (960 words) - 17:17, 23 February 2015
  • [[Lecture 13 - Kernel function for SVMs and ANNs introduction_OldKiwi|13]]| (Continued from [[Lecture 13 - Kernel function for SVMs and ANNs introduction_OldKiwi|Lecture 13]])
    13 KB (2,098 words) - 10:21, 10 June 2013
  • ...e^{-A\left|x\right|}\text{ where }A>0.</math> Determine its characteristic function. ...If <math class="inline">R\left(\tau\right)</math> is the autocorrelation function of <math class="inline">\mathbf{X}\left(t\right)</math> , prove the followi
    3 KB (406 words) - 09:19, 13 September 2013
  • ...function <math class="inline">\mu\left(t\right)</math> and autocovariance function <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> . ...expression for the <math class="inline">n</math> -th order characteristic function of <math class="inline">\mathbf{X}\left(t\right)</math> in terms of <math
    5 KB (763 words) - 09:57, 10 March 2015
  • '''(a)''' Find the probability mass function (pmf) of <math class="inline">\mathbf{Z}</math> . '''(b)''' Find the conditional probability mass function (pmf) of <math class="inline">\mathbf{X}</math> conditional on the event <
    5 KB (780 words) - 00:25, 9 March 2015
  • Find the probability density function of <math class="inline">\mathbf{Y}=\max\left\{ \mathbf{X}_{1},\cdots,\mathb Find the probability density function of <math class="inline">\mathbf{Z}=\min\left\{ \mathbf{X}_{1},\cdots,\mathb
    5 KB (735 words) - 00:17, 10 March 2015
  • ...X}</math> is a binomial distributed random variable with probability mass function (pmf) given by <math class="inline">p_{n}\left(k\right)=\left(\begin{array} ...line">\mathbf{X}</math> . (You must show how you derive the characteristic function.)
    4 KB (609 words) - 00:54, 10 March 2015
  • Find the characteristic function of <math class="inline">\mathbf{X}_{n}</math> . ...">\Phi</math> be the standard normal distribution, i.e., the distribution function of a zero-mean, unit-variance Gaussian random variable. Let <math class="in
    5 KB (726 words) - 09:35, 10 March 2015
  • ...e^{-A\left|x\right|}\text{ where }A>0.</math> Determine its characteristic function.
    2 KB (358 words) - 09:33, 13 September 2013
  • ...lass="inline">\mathbf{X}_{n}</math> 's are i.i.d. RVs with characteristic function given by <math class="inline">\Phi_{\mathbf{X}}\left(\omega\right)=\frac{1} '''(a)''' Determine the characteristic function of <math class="inline">\mathbf{Z}</math> .
    2 KB (282 words) - 09:34, 13 September 2013
  • ...olor{blue}\left( \text{a} \right) \text{Find the joint probability density function } f_{YZ}(y,z).</math>'''<br> ...ero-mean continuous-time Gaussian white noise process with autocorrelation function
    4 KB (547 words) - 15:40, 30 March 2015
  • ...ut discretization of ''atan'' is not quite as straightforward. The atan() function you might normally invoke from the &lt;math.h&gt; library requires floating ...rom the following image. Also note how the characteristic of the ''atan'' function can be seen in the frequency trend of LUT values.
    8 KB (1,176 words) - 14:15, 1 May 2016
  • ...probability_normalization_ECE302S13Boutin|Normalizing the probability mass function of a discrete random variable]] ...on_gaussian_normalization_ECE302S13Boutin|Normalizing the probability mass function of a Gaussian random variable]]
    10 KB (1,422 words) - 19:14, 30 April 2013
  • *3.1 Definition of continuous random variable, probability density function. *3.3 The cumulative distribution function of a random variable (discrete or continuous)
    4 KB (498 words) - 09:18, 17 April 2013
  • ...of recovering the pdf/pmf of a random variable from its moment generating function. ...ction_ECE302S13Boutin|Recover the pmf corresponding to this characteristic function]]
    2 KB (336 words) - 08:39, 18 March 2013
  • ...d_conditional_pdf_ECE302S13Boutin|Find the conditional probability density function]] ...nditional_ellipse_ECE302S13Boutin|Find the conditional probability density function (again)]]
    2 KB (340 words) - 02:37, 27 March 2013
  • ...e Problem]]: Recover the probability mass function from the characteristic function = A discrete random variables X has a moment generating (characteristic) function <math>M_X(s)</math> such that
    1 KB (211 words) - 02:47, 27 March 2013
  • Find the conditional probability density function for some constants a,b>0. Find the conditional probability density function <math>f_{X|Y}(x|y).</math>
    3 KB (559 words) - 06:02, 22 March 2013
  • ...d_conditional_pdf_ECE302S13Boutin|Find the conditional probability density function]] ...nditional_ellipse_ECE302S13Boutin|Find the conditional probability density function (again)]]
    2 KB (333 words) - 17:02, 2 April 2013
  • ...e you that lambda =3 hint so that you can factor out a (lambda-3) from the characteristic polynomial and find the other two roots via the quadratic formula. Now I th Also with Question 6 I am getting a very nasty looking characteristic equation, so I am not to sure how to solve for the algebraic roots.
    17 KB (2,975 words) - 11:36, 11 September 2013
  • [[ECE600_F13_Characteristic_Functions_mhossain|Next Topic: Characteristic Functions]] ...random variable X using the density function f<math>_X</math> or the mass function p<math>_X</math>. <br/>
    8 KB (1,474 words) - 11:12, 21 May 2014

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang