7.6 QE 2003 January

Problem 1 (30 points)

i)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be jointly Gaussian (normal) distributed random variables with mean $ 0 $ , $ E\left[\mathbf{X}^{2}\right]=E\left[\mathbf{Y}^{2}\right]=\sigma^{2} $ and $ E\left[\mathbf{XY}\right]=\rho\sigma^{2} $ with $ \left|\rho\right|<1 $ . Find the joint characteristic function $ E\left[e^{i\left(h_{1}\mathbf{X}+h_{2}\mathbf{Y}\right)}\right] $ .

• We can find the correlation coefficient using the covariance and variances $ r=\frac{Cov\left(\mathbf{X},\mathbf{Y}\right)}{\sigma^{2}}=\frac{E\left[\mathbf{XY}\right]-E\left[\mathbf{X}\right]E\left[\mathbf{Y}\right]}{\sigma^{2}}=\frac{\rho\sigma^{2}-0\cdot0}{\sigma^{2}}=\rho. $

• Now, we can get the joint characteristic function $ \Phi_{\mathbf{X}\mathbf{Y}}\left(\omega_{1},\omega_{2}\right)=e^{i\left(0\cdot\omega_{1}+0\cdot\omega_{2}\right)}e^{-\frac{1}{2}\left(\sigma^{2}\omega_{1}^{2}+2r\sigma^{2}\omega_{1}\omega_{2}+\sigma^{2}\omega_{2}\right)}=e^{-\frac{1}{2}\sigma^{2}\omega^{2}\left(2+2\rho\right)}=e^{-\sigma^{2}\omega^{2}\left(1+\rho\right)}. $

ii)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two jointly Gaussian distributed r.v's with identical means and variances but are not necessarily independent. Show that the r.v. $ \mathbf{V}=\mathbf{X}+\mathbf{Y} $ is independeent of the r.v. $ \mathbf{W}=\mathbf{X}-\mathbf{Y} $ . Is the same answer true for $ \mathbf{A}=f\left(\mathbf{V}\right) $ and $ \mathbf{B}=g\left(\mathbf{W}\right) $ where $ f\left(\cdot\right) $ and $ g\left(\cdot\right) $ are suitable functions such that $ E\left[f\left(\mathbf{V}\right)\right]<\infty $ and $ E\left[g\left(\mathbf{W}\right)\right]<\infty $ . Given reasons.

iii)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be independent $ N\left(m,1\right) $ random variables. Show that the sample mean $ \mathbf{M}=\frac{\mathbf{X}+\mathbf{Y}}{2} $ is independent of the sample variance $ \mathbf{V}=\left(\mathbf{X}-\mathbf{M}\right)^{2}+\left(\mathbf{Y}-\mathbf{M}\right)^{2} $ . Note: $ \mathbf{V} $ is not a Gaussian random variable.

Problem 2 (35 points)

Consider the stochastic process $ \left\{ \mathbf{X}_{n}\right\} $ defined by: $ \mathbf{X}_{n+1}=a\mathbf{X}_{n}+b\mathbf{W}_{n} where \mathbf{X}_{0}\sim N\left(0,\sigma^{2}\right) $ and $ \left\{ \mathbf{W}_{n}\right\} $ is an i.i.d. $ N\left(0,1\right) $ sequence of r.v's independent of $ \mathbf{X}_{0} $ .

i)

Show that if $ R_{k}=cov\left(\mathbf{X}_{k},\mathbf{X}_{k}\right) $ converges as $ k\rightarrow\infty $ , then $ \left\{ \mathbf{X}_{k}\right\} $ converges to a w.s.s. process.

ii)

Show that if $ \sigma^{2} $ is chosen appropriately and $ \left|a\right|<1 $ , then $ \left\{ \mathbf{X}_{k}\right\} $ will be a stationary process for all $ k $ .

iii)

If $ \left|a\right|>1 $ , show that the variance of the process $ \left\{ \mathbf{X}_{k}\right\} $ diverges but $ \frac{\mathbf{X}_{k}}{\left|a\right|^{k}} $ converges in the mean square.

Problem 3 (35 points)

i)

Catastrophes occur at times $ \mathbf{T}_{1},\mathbf{T}_{2},\cdots $, where $ \mathbf{T}_{i}=\sum_{k=1}^{i}\mathbf{X}_{k} $ where the $ \mathbf{X}_{k} $ 's are independent, identically distributed positive random variables. Let $ \mathbf{N}_{t}=\max\left\{ n:\mathbf{T}_{n}\leq t\right\} $ be the number of catastrophes which have occurred by time $ t $ . Show that if $ E\left[\mathbf{X}_{1}\right]<\infty $ then $ \mathbf{N}_{t}\rightarrow\infty $ almost surely (a.s.) and $ \frac{\mathbf{N}_{t}}{t}\rightarrow\frac{1}{E\left[\mathbf{X}_{1}\right]} $ as $ t\rightarrow\infty $ a.s.

ii)

Let $ \left\{ \mathbf{X}_{t},t\geq0\right\} $ be a stochastic process defined by: $ \mathbf{X}_{t}=\sqrt{2}\cos\left(2\pi\xi t\right) $ where $ \xi $ is a $ N\left(0,1\right) $ random variable. Show that as $ t\rightarrow\infty,\;\left\{ \mathbf{X}_{t}\right\} $ converges to a wide sense stationary process. Find the spectral density of the limit process.

Hint:

Use the fact that the characteristic function of a $ N\left(0,1\right) $ r.v. is given by $ E\left[e^{ih\mathbf{X}}\right]=e^{-\frac{h^{2}}{2}} $ .


Back to ECE600

Back to my ECE 600 QE page

Back to the general ECE PHD QE page (for problem discussion)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett