3.1 Definitions

Stochastic process

The idea of a stochastic process is a straightforward extension of that of random variable. Instead of mapping each $ \omega\in\mathcal{S} $ of a random experiment to a number $ \mathbf{X}\left(\omega\right) $ , we map it to a function of time $ \mathbf{X}\left(t,\omega\right) $ that is called sample function.

Note

There is nothing random about the sample functions. The randomness comes from the underlying random experiment.

Note

If we pick a particular point in time $ t=t_{1} $ , we have $ \mathbf{X}\left(t_{1},\omega\right) $ that is a random variable.

Definition

A stochastic process or random process defined on $ \left(\mathcal{S},\mathcal{F},\mathcal{P}\right) $ is a famility of random variables

$ \left\{ \mathbf{X}\left(t\right):t\in\mathbf{T}\right\} $

indexed by $ t $ , where the index set $ \mathbf{T} $ can be discrete or continuous.

Note

1. If $ \mathbf{T} $ is an uncountable subset of $ \mathbf{R} $ , $ \mathbf{X}\left(t\right) $ is called a continuous-time random process.

2. If $ \mathbf{T} $ is an discrete set, $ \mathbf{X}\left(t\right) $ is called a discrete-time random process.

3. $ \mathbf{X}\left(t\right) $ is called a discrete-state random process if for all $ t\in\mathbf{T} $ , it takes on values from a discrete set. Otherwise it is called a continuous-state random process.

Note

Thermal noise is continuous-time continuous state random process.

Notation

We will use the notation $ \mathbf{X}\left(t\right) $ to represent a random process (just as we use $ \mathbf{X} $ to represent a random variable). Technically we should write $ \mathbf{X}\left(t,\omega\right) $ or $ \mathbf{X}\left(\cdot,\cdot\right) $ (just as technically we should write $ \mathbf{X}\left(\omega\right) $ or $ \mathbf{X}\left(\cdot\right) $ for a random variable).

$ \mathbf{X}\left(\cdot,\cdot\right):\mathbf{T}\times\mathcal{S}\longrightarrow\mathbf{R}. $

note

$ \mathbf{X}\left(t,\omega\right) $ or $ \mathbf{X}\left(\cdot,\cdot\right) $ is a random process.

$ \mathbf{X}\left(t_{0},\omega\right) $ or $ \mathbf{X}\left(t_{0},\cdot\right) $ is a random variable for fixed </math>t_{0}</math> .

$ \mathbf{X}\left(t,\omega_{0}\right) $ or $ \mathbf{X}\left(\cdot,\omega_{0}\right) $ for a fixed $ \omega_{0}\in\mathcal{S} $ is a function of time or sample function.

$ \mathbf{X}\left(t_{0},\omega_{0}\right) $ is a real number.

3.1.1 Statistics of Stochastic Processes

First-order CDF and PDF

We use CDFs and PDFs to characterize the probalistic behavior of a random process. A random process sampled at a point in time is a random variable. We can consider its CDF or PDF.

Definition

The first-order CDF of a random process $ \mathbf{X}\left(t\right) $ is

$ F_{\mathbf{X}\left(t\right)}\left(x\right)\triangleq P\left(\left\{ X\left(t\right)\leq x\right\} \right)=F_{\mathbf{X}\left(t\right)}\left(x,t\right) $.

The first-order PDF of a random process $ \mathbf{X}\left(t\right) $ is

$ f_{\mathbf{X}\left(t\right)}\left(x\right)=\frac{dF_{\mathbf{X}\left(t\right)}\left(x\right)}{dx}=f_{\mathbf{X}\left(t\right)}\left(x,t\right). $

The n-th order CDF and PDF

We are often interested in the joint behavior of $ \mathbf{X}\left(t\right) $ sample at more than one point in time. First-order description is not sufficient.

Definition

The n-th order CDF of a random process $ \mathbf{X}\left(t\right) $ is

$ F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right) $

and the n-th order PDF is

$ f_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)=\frac{\partial^{n}F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)}{\partial x_{1}\cdots\partial x_{n}}. $

Of particular interest are the second order $ \left(n=2\right) $ CDFs and PDFs, $ F_{\mathbf{X}\left(t_{1}\right),\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2};t_{1},t_{2}\right) $ and $ f_{\mathbf{X}\left(t_{1}\right),\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2};t_{1},t_{2}\right) $ .

3.1.2 General Properties

Fact

A complex random process $ \mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)+i\mathbf{Y}\left(t\right) $ where $ \mathbf{X}\left(t\right) $ and $ \mathbf{Y}\left(t\right) $ are real jointly-distributed random processes, is completely characterized by

$ F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right),\mathbf{Y}\left(t_{1}\right),\cdots,\mathbf{Y}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n},y_{1},\cdots,y_{n},t_{1},\cdots,t_{n}\right) $

for all $ n\in\mathbf{N} $ and all $ t_{1},\cdots,t_{n} $ . (This is a very hard result to proof.)

Fact. The real version

A real random process $ \mathbf{X}\left(t\right) $ is completely chracterized by the joint CDF

$ F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n};t_{1},\cdots,t_{n}\right) $

for all $ n\in\mathbf{N} $ and all $ t_{1},\cdots,t_{n} $ .

Defintion. Autocorrelation function

For a random process $ \mathbf{X}\left(t\right) $ , real or complex, the autocorrelation function of $ \mathbf{X}\left(t\right) $ is

$ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)\triangleq E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}^{*}\left(t_{2}\right)\right]. $

Note

$ R_{\mathbf{XX}}\left(t_{1},t_{2}\right) $

Note

For $ \mathbf{X}\left(t\right) $ real

$ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right] $

and

$ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=R_{\mathbf{XX}}\left(t_{2},t_{1}\right). $

Note

$ E\left[\left|\mathbf{X}\left(t\right)\right|^{2}\right]=E\left[\mathbf{X}\left(t\right)\mathbf{X}^{*}\left(t\right)\right]=R_{\mathbf{XX}}\left(t,t\right). $

$ E\left[\left|\mathbf{X}\left(t\right)\right|^{2}\right]\geq0\Longrightarrow R_{\mathbf{XX}}\left(t,t\right)\geq0,\quad\forall t. $

Definition. Mean

The mean of a random process $ \mathbf{X}\left(t\right) $ is

$ \eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]. $

If $ \mathbf{X}\left(t\right) $ is a complex random process with $ \mathbf{X}\left(t\right)=\mathbf{X}_{R}\left(t\right)+i\mathbf{X}_{I}\left(t\right) $ , then $ E\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}\left(t\right)=\mathbf{X}_{R}\left(t\right)+i\mathbf{X}_{I}\left(t\right)\right]=E\left[\mathbf{X}_{R}\left(t\right)\right]+iE\left[\mathbf{X}_{I}\left(t\right)\right]. $

Definition. Autocovariance function

The autocovariance function of a random process $ \mathbf{X}\left(t\right) $ with mean $ \eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right] $ is

$ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $

Fact

The autocorrelation function $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ is a non-negative definite function: for any set of numbers $ \left\{ a_{i}\right\} $ and times $ \left\{ t_{i}\right\} $ , and any $ n\in\mathbf{N} $

$ \sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}a_{j}^{*}R_{\mathbf{XX}}\left(t_{i},t_{j}\right)\geq0. $

Definition. White noise process

A random process $ \mathbf{W}\left(t\right) $ is a white noise process if $ C_{\mathbf{WW}}\left(t_{1},t_{2}\right)=0 , \forall t_{1}\neq t_{2} $ .

Note

We will see that all non-trivial white noise processes have $ C_{\mathbf{WW}}\left(t_{1},t_{2}\right)=q\left(t_{1}\right)\cdot\delta\left(t_{1}-t_{2}\right) $ .

Definition. Gaussian random process

A random process $ \mathbf{X}\left(t\right) $ is called Gaussian random process if random variables $ \mathbf{X}\left(t_{1}\right),\mathbf{X}\left(t_{2}\right),\cdots,\mathbf{X}\left(t_{n}\right) $ are jointly Gaussian for any $ n\in\mathbf{N} $ and any set of sampling times $ t_{1},t_{2},\cdots,t_{n} $ .

Note

The n-th order characteristic function of a Gaussian random process is $ \Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\eta_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\} $ .

Important Fact

A Gaussian random process is completely characterized by $ \eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right] $ and $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}^{*}\left(t_{2}\right)\right] $ .

3.1.3 Stationary Processes

Definition. SSS

A random process $ \mathbf{X}\left(t\right) $ is called stationary or strict-sense stationary (SSS) if its probalistic description is invariant to shifts in the time origin:

$ F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)=F_{\mathbf{X}\left(t_{1}+c\right),\cdots,\mathbf{X}\left(t_{n}+c\right)}\left(x_{1},\cdots,x_{n}\right) $

for all $ c\in\mathbf{R} $ , for all $ n\in\mathbf{N} $ , and for all $ t_{1},\cdots,t_{n} $ .

Definition. Jointly SSS

Two random processes are jointly SSS if their joint probabilistic description is invariant to shifts in the time origin:

$ F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right),\mathbf{Y}\left(t_{1}\right),\cdots,\mathbf{Y}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n},y_{1},\cdots,y_{n}\right)=F_{\mathbf{X}\left(t_{1}+c\right),\cdots,\mathbf{X}\left(t_{n}+c\right),\mathbf{Y}\left(t_{1}+c\right),\cdots,\mathbf{Y}\left(t_{n}+c\right)}\left(x_{1},\cdots,x_{n},y_{1},\cdots,y_{n}\right). $

for all $ c\in\mathbf{R} $ , for all $ n\in\mathbf{N} $ , and for all $ t_{1},\cdots,t_{n} $ .

Definition

A complex random process $ \mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)+i\mathbf{Y}\left(t\right) $ where $ \mathbf{X}\left(t\right) $ and $ \mathbf{Y}\left(t\right) $ are real processes is SSS if $ \mathbf{X}\left(t\right) $ and $ \mathbf{Y}\left(t\right) $ are jointly SSS.

Notes on stationary random processes

1. The first-order (n=1 ) cdf or pdf of a stationary random process is independent of time: $ f_{\mathbf{X}\left(t\right)}\left(x\right)=f_{\mathbf{X}\left(t+c\right)}\left(x\right),\quad\forall t\in\mathbf{R}. $

2. The second order (n=2 ) cdf or pdf is a function of time only through the time difference $ \tau_{12}=t_{1}-t_{2} : $ $ f_{\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2}\right)=f_{\mathbf{X}\left(t_{1}+c\right)\mathbf{X}\left(t_{2}+c\right)}\left(x_{1},x_{2}\right)=f\left(x_{1},x_{2},\tau_{12}\right). $

Definition. WSS

• A random process $ \mathbf{X}\left(t\right) $ is called wide sense stationary (WSS) if it satisfies the following two conditions:

1. $ E\left[\mathbf{X}\left(t\right)\right]=\eta_{\mathbf{X}}\left(t\right)=\eta_{\mathbf{X}}\left(\mathbf{\text{constant}}\right) $ .

2. $ E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}^{*}\left(t_{2}\right)\right]=R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=R_{\mathbf{X}}\left(t_{1}-t_{2}\right)=R_{\mathbf{X}}\left(\tau\right) $ where $ \tau=t_{1}-t_{2} $ .

• For a WSS random process $ \mathbf{X}\left(t\right) $ , $ E\left[\left|\mathbf{X}\left(t\right)\right|^{2}\right]=R_{\mathbf{XX}}\left(t_{1},t_{2}\right)|_{t_{1}=t,t_{2}=t}=R_{\mathbf{XX}}\left(t,t\right)=R_{\mathbf{X}}\left(t-t\right)=R_{\mathbf{X}}\left(0\right). $

• The autocovariance function of a WSS random process $ \mathbf{X}\left(t\right) $ is $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\left(\mathbf{X}\left(t_{1}\right)-\eta_{\mathbf{X}}\right)\left(\mathbf{X}\left(t_{2}\right)-\eta_{\mathbf{X}}\right)^{*}\right]=R_{\mathbf{X}}\left(t_{1}-t_{2}\right)-\eta_{\mathbf{X}}\eta_{\mathbf{X}}^{*}=R_{\mathbf{X}}\left(\tau\right)-\eta_{\mathbf{X}}\eta_{\mathbf{X}}^{*}=C_{\mathbf{X}}\left(\tau\right) $ where $ \tau=t_{1}-t_{2} $ .

Note

If $ \mathbf{X}\left(t\right) $ is a SSS random process, then it is WSS. The converse is NOT true. The Gaussian random process is an exception.

Theorem

If $ \mathbf{X}\left(t\right) $ is a WSS random process and it is Gaussian, then it is SSS.

Proof

Assume $ \mathbf{X}\left(t\right) $ has mean $ \eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]=\eta_{\mathbf{X}} $ and covariance $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right)=C_{\mathbf{X}}\left(t_{1}-t_{2}\right) $ . Then the random variables $ \mathbf{X}\left(t_{1}+c\right),\cdots,\mathbf{X}\left(t_{n}+c\right) $ have joint characteristic function.

$ \Phi_{\mathbf{X}\left(t_{1}+c\right)\cdots\mathbf{X}\left(t_{n}+c\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\eta_{\mathbf{X}}\left(t_{k}+c\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j}+c,t_{k}+c\right)\omega_{j}\omega_{k}\right\} $$ =\exp\left\{ i\sum_{k=1}^{n}\eta_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\} $$ =\Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right). $

$ \therefore\mathbf{X}\left(t\right) $ is SSS.


Back to ECE600

Back to General Concepts of Stochastic Processes

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang