Revision as of 16:48, 4 January 2011 by Mboutin (Talk | contribs)

Norm and Agrument of a Complex Number (HW1, ECE301, Fall 2008)

For any complex number

$ z = x + iy\, $

The norm (absolute value) of $ z\, $ is given by ( see important comment on this page regarding using the term "absolute value" only for real numbers)

$ |z| = \sqrt{x^2+y^2} $


The argument of $ z\, $ is given by

$ \phi = arctan (y/x)\, $


Conversion from Cartesian to Polar Form

$ x = r\cos \phi\, $
$ y = \sin \phi\, $
$ z = x + iy = r(\cos \phi + i \sin \phi ) = r e^i\phi\, $

Back to ECE301 Fall 2008 Prof. Boutin

Back to ECE301

Back to Complex Magnitude page

Visit the "Complex Number Identities and Formulas" page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal