Norm and Agrument of a Complex Number (HW1, ECE301, Fall 2008)

For any complex number

$ z = x + iy\, $

The norm (absolute value) of $ z\, $ is given by ( see important comment on this page regarding using the term "absolute value" only for real numbers)

$ |z| = \sqrt{x^2+y^2} $


The argument of $ z\, $ is given by

$ \phi = arctan (y/x)\, $


Conversion from Cartesian to Polar Form

$ x = r\cos \phi\, $
$ y = \sin \phi\, $
$ z = x + iy = r(\cos \phi + i \sin \phi ) = r e^i\phi\, $

Back to ECE301 Fall 2008 Prof. Boutin

Back to ECE301

Back to Complex Magnitude page

Visit the "Complex Number Identities and Formulas" page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn