Line 4: | Line 4: | ||
+ | {| | ||
+ | |- | ||
+ | ! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" colspan="2" | CT Fourier Transform Pairs and Properties (frequency <span class="texhtml">f</span> in hertz per time unit) [[More on CT Fourier transform|(info)]] | ||
+ | |- | ||
+ | ! style="background: none repeat scroll 0% 0% rgb(238, 188, 126);" colspan="2" | (Click title to see explanation on how to obtain the formula in terms of f in hertz) | ||
+ | |- | ||
+ | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Definition CT Fourier Transform and its Inverse | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_CTFT|CT Fourier Transform]] | ||
+ | | <math>X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_InverseCTFT|Inverse CT Fourier Transform]] | ||
+ | | <math>\, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \,</math> | ||
+ | |} | ||
− | + | {| | |
+ | |- | ||
+ | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Pairs | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <span class="texhtml">''x''(''t'')</span> | ||
+ | | <math>\longrightarrow</math> | ||
+ | | <math> X(f) </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_unitimpulse|CTFT of a unit impulse]] | ||
+ | | <math>\delta (t)\ </math> | ||
+ | | | ||
+ | | <math> 1 \! \ </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_shifted_unitimpulse|CTFT of a shifted unit impulse]] | ||
+ | | <math>\delta (t-t_0)\ </math> | ||
+ | | | ||
+ | | <math>e^{-i2\pi ft_0}</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_cpxexp|CTFT of a complex exponential]] | ||
+ | | <math>e^{iw_0t}</math> | ||
+ | | | ||
+ | | <math> \delta (f - \frac{\omega_0}{2\pi}) \ </math> | ||
+ | | | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>e^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math> | ||
+ | | | ||
+ | | <math>\frac{1}{a+i2\pi f}</math> | ||
+ | | | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>te^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math> | ||
+ | | | ||
+ | | <math>\left( \frac{1}{a+i2\pi f}\right)^2</math> | ||
+ | | | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_cos|CTFT of a cosine]] | ||
+ | | <math>\cos(\omega_0 t) \ </math> | ||
+ | | | ||
+ | | <math> \frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \ </math> | ||
+ | | | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_sin|CTFT of a sine]] | ||
+ | | <math>sin(\omega_0 t) \ </math> | ||
+ | | | ||
+ | | <math>\frac{1}{2i} \left[\delta (f - \frac{\omega_0}{2\pi}) - \delta (f + \frac{\omega_0}{2\pi})\right]</math> | ||
+ | | | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_rect|CTFT of a rect]] | ||
+ | | <math>\left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ </math> | ||
+ | | | ||
+ | | <math> \frac{\sin \left(2\pi Tf \right)}{\pi f} \ </math> | ||
+ | | | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_sinc|CTFT of a sinc]] | ||
+ | | <math>\frac{2 \sin \left( W t \right)}{\pi t } \ </math> | ||
+ | | | ||
+ | | <math>\left\{\begin{array}{ll}1, & \text{ if }|f| <\frac{W}{2\pi},\\ 0, & \text{else.}\end{array} \right. \ </math> | ||
+ | | | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_periofunc|CTFT of a periodic function]] | ||
+ | | <math>\sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t}</math> | ||
+ | | | ||
+ | | <math>\sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) \ </math> | ||
+ | | | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_impulsetrain|CTFT of an impulse train]] | ||
+ | | <math>\sum^{\infty}_{n=-\infty} \delta(t-nT) \ </math> | ||
+ | | | ||
+ | | <math>\frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T}) \ </math> | ||
+ | | | ||
+ | |} | ||
+ | |||
+ | {| | ||
+ | |- | ||
+ | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Properties | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <span class="texhtml">''x''(''t'')</span> | ||
+ | | <math>\longrightarrow</math> | ||
+ | | <math> X(f) </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_multiprop|multiplication property]] | ||
+ | | <math>x(t)y(t) \ </math> | ||
+ | | | ||
+ | | <math> X(f)*Y(f) =\int_{-\infty}^{\infty} X(\theta)Y(f-\theta)d\theta</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_convprop|convolution property]] | ||
+ | | <math>x(t)*y(t) \!</math> | ||
+ | | | ||
+ | | <math> X(f)Y(f) \!</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_timerev|time reversal]] | ||
+ | | <math>\ x(-t) </math> | ||
+ | | | ||
+ | | <math>\ X(-f)</math> | ||
+ | |} | ||
+ | |||
+ | {| | ||
+ | |- | ||
+ | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other CT Fourier Transform Properties | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_Parseval|Parseval's relation]] | ||
+ | | <math>\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df</math> | ||
+ | |} | ||
+ | |||
+ | ---- | ||
+ | |||
+ | [[MegaCollectiveTableTrial1|Back to Collective Table]] | [[2010_Fall_ECE_438_Boutin|Back to 438 main page]] | ||
+ | |||
+ | [[Category:Formulas]] | ||
Revision as of 02:39, 4 September 2013
HW1_Solution_ECE438F13
CT Fourier Transform Pairs and Properties (frequency f in hertz per time unit) (info) | |
---|---|
(Click title to see explanation on how to obtain the formula in terms of f in hertz) | |
Definition CT Fourier Transform and its Inverse | |
CT Fourier Transform | $ X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $ |
Inverse CT Fourier Transform | $ \, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \, $ |
CT Fourier Transform Pairs | ||||
---|---|---|---|---|
x(t) | $ \longrightarrow $ | $ X(f) $ | ||
CTFT of a unit impulse | $ \delta (t)\ $ | $ 1 \! \ $ | ||
CTFT of a shifted unit impulse | $ \delta (t-t_0)\ $ | $ e^{-i2\pi ft_0} $ | ||
CTFT of a complex exponential | $ e^{iw_0t} $ | $ \delta (f - \frac{\omega_0}{2\pi}) \ $ | ||
$ e^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ | $ \frac{1}{a+i2\pi f} $ | |||
$ te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ | $ \left( \frac{1}{a+i2\pi f}\right)^2 $ | |||
CTFT of a cosine | $ \cos(\omega_0 t) \ $ | $ \frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \ $ | ||
CTFT of a sine | $ sin(\omega_0 t) \ $ | $ \frac{1}{2i} \left[\delta (f - \frac{\omega_0}{2\pi}) - \delta (f + \frac{\omega_0}{2\pi})\right] $ | ||
CTFT of a rect | $ \left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ $ | $ \frac{\sin \left(2\pi Tf \right)}{\pi f} \ $ | ||
CTFT of a sinc | $ \frac{2 \sin \left( W t \right)}{\pi t } \ $ | $ \left\{\begin{array}{ll}1, & \text{ if }|f| <\frac{W}{2\pi},\\ 0, & \text{else.}\end{array} \right. \ $ | ||
CTFT of a periodic function | $ \sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $ | $ \sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) \ $ | ||
CTFT of an impulse train | $ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ | $ \frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T}) \ $ |
CT Fourier Transform Properties | |||
---|---|---|---|
x(t) | $ \longrightarrow $ | $ X(f) $ | |
multiplication property | $ x(t)y(t) \ $ | $ X(f)*Y(f) =\int_{-\infty}^{\infty} X(\theta)Y(f-\theta)d\theta $ | |
convolution property | $ x(t)*y(t) \! $ | $ X(f)Y(f) \! $ | |
time reversal | $ \ x(-t) $ | $ \ X(-f) $ |
Other CT Fourier Transform Properties | |
---|---|
Parseval's relation | $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df $ |
Back to Collective Table | Back to 438 main pageBack to 2013 Fall ECE 438 Boutin