How to obtain the multiplication property in terms of f in hertz (from the formula in terms of $ \omega $)

Denoting

$ \mathcal{Z}(\omega)=\mathcal{X}(\omega)*\mathcal{Y}(\omega) \ $

$ Z(f)=X(f)*Y(f) \ $

To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ Z(f)=\mathcal{Z}(2\pi f)=\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{X}(\theta)\mathcal{Y}(2\pi f-\theta)d\theta \ $

$ Let\ \varphi =\frac{\theta}{2\pi},\ then\ \theta=2\pi \varphi \ $

$ \begin{align} Z(f) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{X}(2\pi \varphi)\mathcal{Y}(2\pi f-2\pi \varphi)d2\pi \varphi \\ &= \int_{-\infty}^{\infty} \mathcal{X}(2\pi \varphi)\mathcal{Y}(2\pi (f-\varphi))d\varphi \\ &= \int_{-\infty}^{\infty} X(\varphi)Y(f-\varphi)d\varphi \end{align} $

$ Since\ X(\alpha)=\mathcal{X}(2\pi \alpha),Y(\alpha)=\mathcal{Y}(2\pi \alpha) $


Back to Table

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett