How to obtain the CTFT of a rect in terms of f in hertz (from the formula in terms of $ \omega $)

Recall:

$ x(t)=\left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. $

$ \mathcal{X}(\omega)=\frac{2 \sin \left( T \omega \right)}{\omega} $

To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ X(f)=\mathcal{X}(2\pi f)=\frac{\sin \left(2\pi Tf \right)}{\pi f} \ $


Back to Table

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009