Line 129: Line 129:
 
| 13  
 
| 13  
 
| [[Walther_MA271_Fall2020_topic13|Fisher information]]
 
| [[Walther_MA271_Fall2020_topic13|Fisher information]]
| Group 12:  
+
| Group 13:  
 
|-
 
|-
 
| 14  
 
| 14  
 
| [[Walther_MA271_Fall2020_topic14|Feynman integrals]]
 
| [[Walther_MA271_Fall2020_topic14|Feynman integrals]]
| Group 12:  
+
| Group 14:  
 
|-
 
|-
 
| 15  
 
| 15  
 
| [[Walther_MA271_Fall2020_topic15|Goedel incompleteness]]
 
| [[Walther_MA271_Fall2020_topic15|Goedel incompleteness]]
| Group 12:  
+
| Group 15:  
 
|-
 
|-
 
| 16  
 
| 16  
 
| [[Walther_MA271_Fall2020_topic16|Curse of dimensionality]]
 
| [[Walther_MA271_Fall2020_topic16|Curse of dimensionality]]
| Group 12:  
+
| Group 16:  
 
|-
 
|-
 
| 17  
 
| 17  
 
| [[Walther_MA271_Fall2020_topic17|Fractals]]
 
| [[Walther_MA271_Fall2020_topic17|Fractals]]
| Group 12:  
+
| Group 17:  
 
|-
 
|-
 
| 18  
 
| 18  
 
| [[Walther_MA271_Fall2020_topic18|Haar measure]]
 
| [[Walther_MA271_Fall2020_topic18|Haar measure]]
| Group 12:  
+
| Group 18:  
 
|-
 
|-
 
| 19  
 
| 19  
 
| [[Walther_MA271_Fall2020_topic19|Cauchy's residue theorem]]
 
| [[Walther_MA271_Fall2020_topic19|Cauchy's residue theorem]]
| Group 12:  
+
| Group 19:  
 
|-
 
|-
 
| 20  
 
| 20  
 
| [[Walther_MA271_Fall2020_topic20|Fourier transforms]]
 
| [[Walther_MA271_Fall2020_topic20|Fourier transforms]]
| Group 12:  
+
| Group 20:  
 
|-
 
|-
 
| 21  
 
| 21  
 
| [[Walther_MA271_Fall2020_topic21|Nyquist's theorem]]
 
| [[Walther_MA271_Fall2020_topic21|Nyquist's theorem]]
| Group 12:  
+
| Group 21:  
 
|-
 
|-
 
| 22  
 
| 22  
 
| [[Walther_MA271_Fall2020_topic22|Hyperbolic spaces]]
 
| [[Walther_MA271_Fall2020_topic22|Hyperbolic spaces]]
| Group 12:  
+
| Group 22:  
 
|-
 
|-
 
| 23  
 
| 23  
 
| [[Walther_MA271_Fall2020_topic23|Single value decompositions]]
 
| [[Walther_MA271_Fall2020_topic23|Single value decompositions]]
| Group 12:  
+
| Group 23:  
 
|-
 
|-
 
| 24  
 
| 24  
 
| [[Walther_MA271_Fall2020_topic24|Hilbert's Nullstellensatz]]
 
| [[Walther_MA271_Fall2020_topic24|Hilbert's Nullstellensatz]]
| Group 12:  
+
| Group 24:  
 
|-
 
|-
 
| 25  
 
| 25  
 
| [[Walther_MA271_Fall2020_topic25|Maximum principle in analysis]]
 
| [[Walther_MA271_Fall2020_topic25|Maximum principle in analysis]]
| Group 12:  
+
| Group 25:  
 
|-
 
|-
 
| 26  
 
| 26  
 
| [[Walther_MA271_Fall2020_topic26|Banach spaces]]
 
| [[Walther_MA271_Fall2020_topic26|Banach spaces]]
| Group 12:  
+
| Group 26:  
 
|-
 
|-
 
| 27  
 
| 27  
 
| [[Walther_MA271_Fall2020_topic27|Penrose tilings]]
 
| [[Walther_MA271_Fall2020_topic27|Penrose tilings]]
| Group 12:  
+
| Group 27:  
 
|-
 
|-
 
|}
 
|}

Revision as of 11:53, 2 August 2020

Rhea Section for MA 271 Professor Walther, Fall 2020

Rhea Section for MA271: "Multivariable Calculus"

Professor Walther, Fall 2020



Welcome!

To edit: click on "user" and choose "log in" in the drop down menu. Enter Purdue ID and password. After logging in, click "actions" and select "edit". Then make the requisite changes in the editor you will see. Then click "save page" all the way down. Check that you wrote what you wanted.

Please write [[Category:MA271Fall2020Walther]] at the bottom of each of your pages,

OTHERWISE NO CREDIT !

(If you use the "Create a child page" button, this should happen automatically...)


Course Info

  • Instructor: Prof. Walther
    • Office: MATH 746
    • email: walther at math dot purdue dot edu
    • Office hours: Mon 11:30-12:30, Th 2:00-3:00 in my office or MATH817.
  • Class time and location: MTWTh 8:30-9:20 and 9:30-10:20, REC 122
  • Book: Thomas' Calculus, early transcendentals. Edition 14. You need chapters 10-16 only.

Important Links


Course Related Material


Discussion

  • post link to discussion page here
  • post link to discussion page here

Other Links


Your turn! Student Projects

As per the syllabus, 10% of your grade will be based on contributing a Rhea page on a subject of your choice. To pick a subject suggested below, simply write your name next to it. (See above how to edit this page).

Notes:

  • No more than four people per subject.
  • Do not remove other's people's names from projects. Rhea keeps score of edits; this is not anonymous.

Your project page will be graded based on content and presentation. Describe the subject as you see it, and report what you find interesting. Feel free to add examples, computations, etc. Links to other sources and related subjects will improve the score. Do not simply copy a book or webpage and do not plagiarize. Use your own words to say what you want to say, don't paste other people's work without acknowledging explicitly. Read Rhea's copyright policy before proceeding.

Required components: see the syllabus.

For some lovely contributions, see Honors Project 2011 by Daniel Lee.

Deadline: Sunday before finals week, December 2nd. No changes after that will be taken into account.



Topic Number Topic Description Team Name
1 The Galois group Group 1:
2 Markov chains Group 2:
3 The fundamental group Group 3:
4 Cluster algebras Group 4:
5 Hyperplane arrangements Group 5:
6 Milnor fibers Group 6:
7 Riemann surfaces Group 7:
8 Modular forms Group 8:
9 The Laplace operator Group 9:
10 Littewood--Richardson rules Group 10:
11 Calabi--Yau manifolds Group 11:
12 Elliptc curves Group 12:
13 Fisher information Group 13:
14 Feynman integrals Group 14:
15 Goedel incompleteness Group 15:
16 Curse of dimensionality Group 16:
17 Fractals Group 17:
18 Haar measure Group 18:
19 Cauchy's residue theorem Group 19:
20 Fourier transforms Group 20:
21 Nyquist's theorem Group 21:
22 Hyperbolic spaces Group 22:
23 Single value decompositions Group 23:
24 Hilbert's Nullstellensatz Group 24:
25 Maximum principle in analysis Group 25:
26 Banach spaces Group 26:
27 Penrose tilings Group 27:

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett