Line 3: Line 3:
 
=Support Vector Machines (SVM)=
 
=Support Vector Machines (SVM)=
  
 +
== Lectures on SVM==
 +
*ECE662, Spring 2010, [[User:mboutin|Prof. Boutin]]: Lecture [[Lecture22ECE662S10|22]], [[Lecture23ECE662S10|23]]
 +
*ECE662, Spring 2008, [[User:mboutin|Prof. Boutin]]: Lecture [[Lecture_11_-_Fischer's_Linear_Discriminant_again_OldKiwi|11]],[[Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem_OldKiwi|12]],[[Lecture_13_-_Kernel_function_for_SVMs_and_ANNs_introduction_OldKiwi|13]]
  
 
==Lecture Notes on SVM==
 
==Lecture Notes on SVM==
*Spring 2008, Prof. Boutin: Lecture [[Lecture_11_-_Fischer's_Linear_Discriminant_again_OldKiwi|11]],[[Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem_OldKiwi|12]],[[Lecture_13_-_Kernel_function_for_SVMs_and_ANNs_introduction_OldKiwi|13]]
+
*ECE662, Spring 2008, Prof. Boutin: Lecture [[Lecture_11_-_Fischer's_Linear_Discriminant_again_OldKiwi|11]],[[Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem_OldKiwi|12]],[[Lecture_13_-_Kernel_function_for_SVMs_and_ANNs_introduction_OldKiwi|13]]
  
 
== Relevant Homework  ==
 
== Relevant Homework  ==
*[[Homework 2_OldKiwi|HW2, Spring 2008, Prof. Boutin]]
+
*[[Homework 2_OldKiwi|HW2, ECE662, Spring 2008, Prof. Boutin]]
 
+
  
 
== Useful Links ==
 
== Useful Links ==
 
  
 
* [http://en.wikipedia.org/wiki/Support_vector_machine Support Vector Machine on Wikipedia]
 
* [http://en.wikipedia.org/wiki/Support_vector_machine Support Vector Machine on Wikipedia]

Latest revision as of 09:56, 13 April 2010


Support Vector Machines (SVM)

Lectures on SVM

Lecture Notes on SVM

  • ECE662, Spring 2008, Prof. Boutin: Lecture 11,12,13

Relevant Homework

Useful Links

  • LIBSVM - A library of SVM software, including both C and Matlab code. Various interfaces through several platforms available as well.
  • svms.org:Here is a good webpage containing links to effective Support Vector Machines packages, written in C/C++. Matlab, applicable for binary/multi- calss classifications.

Journal References

  • M.A. Aizerman, E.M. Braverman, L.I. Rozoner. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Control, 1964, Vol. 25, pp. 821-837.
  • Bernhard E. Boser and Isabelle M. Guyon and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. COLT '92: Proceedings of the fifth annual workshop on Computational learning theory. 1992. Pittsburgh, PA.




Back to ECE662

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn