(20 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | <span style="color:green"> I suggest putting a link next to each formula explaining how to obtain it from the formula in terms of <math>\omega</math>.</span> --[[User:Mboutin|Mboutin]] 08:52, 3 September 2010 (UTC) | + | *<span style="color:green"> I suggest putting a link next to each formula explaining how to obtain it from the formula in terms of <math>\omega</math>. Also, I would not use the "mathcal" (curly) font for the transform variable, just a capital letter instead. </span> --[[User:Mboutin|Mboutin]] 08:52, 3 September 2010 (UTC). |
+ | **<span style="color:green"> Fixed the X(f) notation </span> -[[User:sbiddand|Sbiddand]] | ||
+ | *<span style="color:green">The explanation for each formula still needs to be added! In particular, some students said it was not clear how to get the convolution property in terms of f. So this needs to be explained clearly.</span> --[[User:Mboutin|Mboutin]] 09:04, 7 September 2010 (UTC) | ||
+ | **<span style="color:green"> Provided explanation for each formula. </span> -[[User:zhao148|Zhao]] | ||
+ | ***<span style="color:green"> Modified explanation for each formula. </span> -[[User:zhao148|Zhao]] 17:20, 15 September 2010 (UTC). | ||
{| | {| | ||
Line 5: | Line 9: | ||
! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" colspan="2" | CT Fourier Transform Pairs and Properties (frequency <span class="texhtml">f</span> in hertz per time unit) [[More on CT Fourier transform|(info)]] | ! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" colspan="2" | CT Fourier Transform Pairs and Properties (frequency <span class="texhtml">f</span> in hertz per time unit) [[More on CT Fourier transform|(info)]] | ||
|- | |- | ||
− | ! style="background: none repeat scroll 0% 0% rgb(238, | + | ! style="background: none repeat scroll 0% 0% rgb(238, 188, 126);" colspan="2" | (Click title to see explanation on how to obtain the formula in terms of f in hertz) |
|- | |- | ||
− | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Definition CT Fourier Transform and its Inverse | |
− | + | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | Inverse | + | | align="right" style="padding-right: 1em;" | [[Explain_CTFT|CT Fourier Transform]] |
− | | <math>\, x(t)=\mathcal{F}^{-1}( | + | | <math>X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math> |
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[Explain_InverseCTFT|Inverse CT Fourier Transform]] | ||
+ | | <math>\, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \,</math> | ||
|} | |} | ||
{| | {| | ||
|- | |- | ||
− | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Pairs | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Pairs |
|- | |- | ||
| align="right" style="padding-right: 1em;" | | | align="right" style="padding-right: 1em;" | | ||
| <span class="texhtml">''x''(''t'')</span> | | <span class="texhtml">''x''(''t'')</span> | ||
| <math>\longrightarrow</math> | | <math>\longrightarrow</math> | ||
− | | <math> | + | | <math> X(f) </math> |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CTFT of a unit impulse | + | | align="right" style="padding-right: 1em;" | [[Explain_unitimpulse|CTFT of a unit impulse]] |
| <math>\delta (t)\ </math> | | <math>\delta (t)\ </math> | ||
| | | | ||
| <math> 1 \! \ </math> | | <math> 1 \! \ </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CTFT of a shifted unit impulse | + | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_shifted_unitimpulse|CTFT of a shifted unit impulse]] |
| <math>\delta (t-t_0)\ </math> | | <math>\delta (t-t_0)\ </math> | ||
| | | | ||
| <math>e^{-i2\pi ft_0}</math> | | <math>e^{-i2\pi ft_0}</math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CTFT of a complex exponential | + | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_cpxexp|CTFT of a complex exponential]] |
| <math>e^{iw_0t}</math> | | <math>e^{iw_0t}</math> | ||
| | | | ||
Line 51: | Line 57: | ||
| | | | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CTFT of a cosine | + | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_cos|CTFT of a cosine]] |
| <math>\cos(\omega_0 t) \ </math> | | <math>\cos(\omega_0 t) \ </math> | ||
| | | | ||
Line 57: | Line 63: | ||
| | | | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CTFT of a sine | + | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_sin|CTFT of a sine]] |
| <math>sin(\omega_0 t) \ </math> | | <math>sin(\omega_0 t) \ </math> | ||
| | | | ||
Line 63: | Line 69: | ||
| | | | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CTFT of a rect | + | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_rect|CTFT of a rect]] |
| <math>\left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ </math> | | <math>\left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ </math> | ||
| | | | ||
Line 69: | Line 75: | ||
| | | | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CTFT of a sinc | + | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_sinc|CTFT of a sinc]] |
| <math>\frac{2 \sin \left( W t \right)}{\pi t } \ </math> | | <math>\frac{2 \sin \left( W t \right)}{\pi t } \ </math> | ||
| | | | ||
Line 75: | Line 81: | ||
| | | | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CTFT of a periodic function | + | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_periofunc|CTFT of a periodic function]] |
| <math>\sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t}</math> | | <math>\sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t}</math> | ||
| | | | ||
Line 81: | Line 87: | ||
| | | | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CTFT of an impulse train | + | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_impulsetrain|CTFT of an impulse train]] |
| <math>\sum^{\infty}_{n=-\infty} \delta(t-nT) \ </math> | | <math>\sum^{\infty}_{n=-\infty} \delta(t-nT) \ </math> | ||
| | | | ||
Line 90: | Line 96: | ||
{| | {| | ||
|- | |- | ||
− | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Properties | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Properties |
|- | |- | ||
| align="right" style="padding-right: 1em;" | | | align="right" style="padding-right: 1em;" | | ||
| <span class="texhtml">''x''(''t'')</span> | | <span class="texhtml">''x''(''t'')</span> | ||
| <math>\longrightarrow</math> | | <math>\longrightarrow</math> | ||
− | | <math> | + | | <math> X(f) </math> |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | multiplication property | + | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_multiprop|multiplication property]] |
| <math>x(t)y(t) \ </math> | | <math>x(t)y(t) \ </math> | ||
| | | | ||
| <math> X(f)*Y(f) =\int_{-\infty}^{\infty} X(\theta)Y(f-\theta)d\theta</math> | | <math> X(f)*Y(f) =\int_{-\infty}^{\infty} X(\theta)Y(f-\theta)d\theta</math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | convolution property | + | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_convprop|convolution property]] |
| <math>x(t)*y(t) \!</math> | | <math>x(t)*y(t) \!</math> | ||
| | | | ||
| <math> X(f)Y(f) \!</math> | | <math> X(f)Y(f) \!</math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | time reversal | + | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_timerev|time reversal]] |
| <math>\ x(-t) </math> | | <math>\ x(-t) </math> | ||
| | | | ||
Line 115: | Line 121: | ||
{| | {| | ||
|- | |- | ||
− | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other CT Fourier Transform Properties | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other CT Fourier Transform Properties |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | Parseval's relation | + | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_Parseval|Parseval's relation]] |
− | | <math>\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} | | + | | <math>\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df</math> |
|} | |} | ||
---- | ---- | ||
− | [[MegaCollectiveTableTrial1|Back to Collective Table]] | + | [[MegaCollectiveTableTrial1|Back to Collective Table]] | [[2010_Fall_ECE_438_Boutin|Back to 438 main page]] |
[[Category:Formulas]] | [[Category:Formulas]] |
Latest revision as of 11:26, 15 September 2010
- I suggest putting a link next to each formula explaining how to obtain it from the formula in terms of $ \omega $. Also, I would not use the "mathcal" (curly) font for the transform variable, just a capital letter instead. --Mboutin 08:52, 3 September 2010 (UTC).
- Fixed the X(f) notation -Sbiddand
- The explanation for each formula still needs to be added! In particular, some students said it was not clear how to get the convolution property in terms of f. So this needs to be explained clearly. --Mboutin 09:04, 7 September 2010 (UTC)
CT Fourier Transform Pairs and Properties (frequency f in hertz per time unit) (info) | |
---|---|
(Click title to see explanation on how to obtain the formula in terms of f in hertz) | |
Definition CT Fourier Transform and its Inverse | |
CT Fourier Transform | $ X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $ |
Inverse CT Fourier Transform | $ \, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \, $ |
CT Fourier Transform Pairs | ||||
---|---|---|---|---|
x(t) | $ \longrightarrow $ | $ X(f) $ | ||
CTFT of a unit impulse | $ \delta (t)\ $ | $ 1 \! \ $ | ||
CTFT of a shifted unit impulse | $ \delta (t-t_0)\ $ | $ e^{-i2\pi ft_0} $ | ||
CTFT of a complex exponential | $ e^{iw_0t} $ | $ \delta (f - \frac{\omega_0}{2\pi}) \ $ | ||
$ e^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ | $ \frac{1}{a+i2\pi f} $ | |||
$ te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ | $ \left( \frac{1}{a+i2\pi f}\right)^2 $ | |||
CTFT of a cosine | $ \cos(\omega_0 t) \ $ | $ \frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \ $ | ||
CTFT of a sine | $ sin(\omega_0 t) \ $ | $ \frac{1}{2i} \left[\delta (f - \frac{\omega_0}{2\pi}) - \delta (f + \frac{\omega_0}{2\pi})\right] $ | ||
CTFT of a rect | $ \left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ $ | $ \frac{\sin \left(2\pi Tf \right)}{\pi f} \ $ | ||
CTFT of a sinc | $ \frac{2 \sin \left( W t \right)}{\pi t } \ $ | $ \left\{\begin{array}{ll}1, & \text{ if }|f| <\frac{W}{2\pi},\\ 0, & \text{else.}\end{array} \right. \ $ | ||
CTFT of a periodic function | $ \sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $ | $ \sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) \ $ | ||
CTFT of an impulse train | $ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ | $ \frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T}) \ $ |
CT Fourier Transform Properties | |||
---|---|---|---|
x(t) | $ \longrightarrow $ | $ X(f) $ | |
multiplication property | $ x(t)y(t) \ $ | $ X(f)*Y(f) =\int_{-\infty}^{\infty} X(\theta)Y(f-\theta)d\theta $ | |
convolution property | $ x(t)*y(t) \! $ | $ X(f)Y(f) \! $ | |
time reversal | $ \ x(-t) $ | $ \ X(-f) $ |
Other CT Fourier Transform Properties | |
---|---|
Parseval's relation | $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df $ |