(43 intermediate revisions by 8 users not shown)
Line 1: Line 1:
[[Category:ECE662Spring2010mboutin]]
+
<br>
  
 +
<br>
  
 
+
= [[ECE662]]: "Statistical Pattern Recognition and Decision Making Processes", Spring 2010 =
=[[ECE662]]: "Satistical Pattern Recognition and Decision Making Processes", Spring 2010=
+
<div style="border-style: solid; border-color: rgb(68, 68, 136) rgb(68, 68, 136) rgb(68, 68, 136) rgb(51, 51, 136); border-width: 1px 1px 1px 4px; margin: auto; padding: 2em; background: rgb(238, 238, 255) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; width: 30em; text-align: center;">
+
<div style="background: #eef; border: 1px solid #448; border-left: 4px solid #338; width: 30em; padding: 2em; margin: auto; text-align: center;">
+
 
Message Area:
 
Message Area:
  
Welcome!
+
If you are interested in robotics and vision, there is a new course for you next Fall: [[2010_Fall_IE_590_Wachs| IE 590 "Robotics and Machine Vision"]]
 +
</div>
 +
== General Course Information ==
  
Rhea is now on [http://www.facebook.com/pages/West-Lafayette-IN/Rhea/88771959948 Facebook].
+
*Instructor: [[User:Mboutin|Prof. Boutin]] a.k.a. Prof. Mimi
 +
*Office: MSEE342
 +
*Email: mboutin at purdue dot you know where
 +
*Class meets Tu,Th 12-13:15 in EE115
 +
*Office hours are listed [[Open office hours mboutin|here]]
 +
*[[Media:SyllabusECE662S10.pdf|Syllabus]]
 +
*[[OutlineECE662S10|Course Outline]]
 +
*Class cancellation: Jan 19, Jan 21, Feb 23, Feb 25
 +
*Make up classes: Friday April 9, 16, 23, 30, 1:30-2:30, EE117.
  
</div>
+
==Lecture Summaries==
 +
[[Lecture1ECE662S10|Lecture 1]],
 +
[[Lecture2ECE662S10|2]],
 +
[[Lecture3ECE662S10|3]]
 +
,[[Lecture4ECE662S10|4]]
 +
,[[Lecture5ECE662S10|5]]
 +
,[[Lecture6ECE662S10|6]]
 +
,[[Lecture7ECE662S10|7]]
 +
,[[Lecture8ECE662S10|8]]
 +
,[[Lecture9ECE662S10|9]]
 +
,[[Lecture10ECE662S10|10]]
 +
,[[Lecture11ECE662S10|11]]
 +
,[[Lecture12ECE662S10|12]]
 +
,[[Lecture13ECE662S10|13]]
 +
,[[Lecture14ECE662S10|14]]
 +
,[[Lecture15ECE662S10|15]]
 +
,[[Lecture16ECE662S10|16]]
 +
,[[Lecture17ECE662S10|17]]
 +
,[[Lecture18ECE662S10|18]]
 +
,[[Lecture19ECE662S10|19]]
 +
,[[Lecture20ECE662S10|20]]
 +
,[[Lecture21ECE662S10|21]]
 +
,[[Lecture22ECE662S10|22]]
 +
,[[Lecture23ECE662S10|23]]
 +
,[[Lecture24ECE662S10|24]]
 +
,[[Lecture25ECE662S10|25]]
 +
,[[Lecture26ECE662S10|26]]
 +
,[[Lecture27ECE662S10|27]]
 +
,[[Lecture28ECE662S10|28]]
 +
,[[Lecture29ECE662S10|29]].
  
==General Course Information==
+
== Links and Material Used in Class ==
* Instructor: [[User:mboutin|Prof. Boutin]] a.k.a. Prof. Mimi
+
* Office: MSEE342
+
* Email: mboutin at purdue dot you know where
+
* Class meets Tu,Th 12-13:15 in EE115
+
* Office hours are listed [[Open_office_hours_mboutin|here]]
+
*[[Media:syllabusECE662S10.pdf|Syllabus]]
+
  
== Discussions and Students' perspectives ==
+
*[http://www.statisticalengineering.com/central_limit_theorem.htm Illustration of Central Limit Theorem with uniform distrribution]
*[[ECE662_topic1_discussions|Week 1: Introduction and Expectations]]
+
  
==Homework==
+
== Discussions and Students' perspectives  ==
* [[hw0_ECE662Spring2010|HW0 - getting ready]]
+
  
==References==
+
*[[ECE662 topic1 discussions|Introduction and Expectations]]
 +
*[[ECE662 topic2 discussions|Is Bayes truly the best?]]
 +
*[[ECE662 topic3 discussions|Central Limit Theorem illustrations]]
 +
*[[ECE662 hw1 discussions|Hw1: Discuss the first hw here.]]
 +
*[[EE662Sp10Semimetric|Distance Functions Where Triangle Inequality Doesn't Hold]]
 +
*[[EE662Sp10AbstarctAlgebra|Group Theory Background for 3-25-10 and 3-30-10 Lectures]]
 +
*[[ECE662 hw2 discussions|Hw2: Discuss the second hw here.]]
 +
*[[ECE662 hw3 discussions|Hw3: Discuss the third hw here.]]
 +
*[[ECE662 topic8 discussions|Linear Perceptron classifier in Batch mode]]
 +
*[[Bayes_Rate_Fallacy:_Bayes_Rules_under_Severe_Class_Imbalance|Bayes rule under severe class imbalance]]
 +
*[[Fisher_discriminant_under_nonlinear_data|Fisher linear discriminant in non linearly separable data]]
 +
*[[One_class_svm|One-Class Support Vector Machines for Anomaly Detection]]
 +
*[[EE662Sp10_HiddenMarkovModel|Intro to Hidden Markov Model]]
 +
*[[ANN_Simulink_examples_ece662_Sp2010|ANN Jump Start: Using MATLAB Simulink to train a network]]
  
* [["Introduction to Statistical Pattern Recognition" by K. Fukunaga_OldKiwi]] (This is the main reference)
+
== Feedback  ==
* [["Pattern Classification" by Duda, Hart, and Stork_OldKiwi]]
+
* [["Pattern Recognition: A Statistical Approach" by P.A. Devijver and J.V. Kittler_OldKiwi]]
+
* [["Pattern Recognition and Neural Networks" by Brian Ripley_OldKiwi]]
+
* [["Introduction to Data Mining" by P-N Tan, M. Steinbach and V. Kumar_OldKiwi]]
+
  
 +
*[[Star feedbackECE662S2010|Stars for Rhea participation]] <span style="text-decoration: blink;"> New! </span>
 +
*[[FavoritedecisionECE662S10|Student Poll: What is your favorite decision method?]]
 +
 +
== Homework ==
 +
 +
*[[Hw0 ECE662Spring2010|HW0 - getting ready]]
 +
*[[Hw1 ECE662Spring2010|HW1- Bayes rule for normally distributed features]]
 +
*[[Hw2 ECE662Spring2010|HW2- Bayes rule using parametric density estimation]]
 +
*[[Hw3 ECE662Spring2010|HW3- Bayes rule using non-parametric density estimation]]
 +
 +
== References ==
 +
 +
*[["Introduction to Statistical Pattern Recognition" by K. Fukunaga OldKiwi]] (This is the main reference)
 +
*[["Pattern Classification" by Duda, Hart, and Stork OldKiwi]]
 +
*[["Pattern Recognition: A Statistical Approach" by P.A. Devijver and J.V. Kittler OldKiwi]]
 +
*[["Pattern Recognition and Neural Networks" by Brian Ripley OldKiwi]]
 +
*[["Introduction to Data Mining" by P-N Tan, M. Steinbach and V. Kumar OldKiwi]]
 +
 +
== Class Notes ==
 +
*[[ECE662Sp10_MakeupLectureNotes01|Makeup Lecture #1, 9 April 2010]]
 +
*[[Noteslecture8ECE662S10|Lecture 8]]
 +
*[[Noteslecture11ECE662S10|Lecture 11]]
 +
*[[Noteslecture20ECE662S10|Lecture 20, Thursday April 8, 2010]]
 
----
 
----
[[Course List|Back to course list]]
+
 
 +
[[Course List|Back to course list]]
 +
 
 +
[[Category:ECE662Spring2010mboutin]]

Latest revision as of 11:24, 25 June 2010



ECE662: "Statistical Pattern Recognition and Decision Making Processes", Spring 2010

Message Area:

If you are interested in robotics and vision, there is a new course for you next Fall: IE 590 "Robotics and Machine Vision"

General Course Information

  • Instructor: Prof. Boutin a.k.a. Prof. Mimi
  • Office: MSEE342
  • Email: mboutin at purdue dot you know where
  • Class meets Tu,Th 12-13:15 in EE115
  • Office hours are listed here
  • Syllabus
  • Course Outline
  • Class cancellation: Jan 19, Jan 21, Feb 23, Feb 25
  • Make up classes: Friday April 9, 16, 23, 30, 1:30-2:30, EE117.

Lecture Summaries

Lecture 1, 2, 3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29.

Links and Material Used in Class

Discussions and Students' perspectives

Feedback

Homework

References

Class Notes


Back to course list

Alumni Liaison

EISL lab graduate

Mu Qiao