Course Outline, ECE662 Spring 2010 Prof. Mimi
Note: This is an approximate outline that is subject to change throughout the semester.
Lecture | Topic |
---|---|
1 | 1. Introduction |
1 | 2. What is pattern Recognition |
2,3 | 3. Finite vs Infinite feature spaces |
4,5 | 4. Bayes Rule |
6-10 |
5. Discriminant functions
|
11,12,13 |
6. Parametric Density Estimation
|
13-19 |
7. Non-parametric Density Estimation
|
19,20,21, 22 | 8. Linear Discriminants |
22, 23 ,24,25,26 |
9. Non-Linear Discriminant functions
|
27,28,29,30 | 10. Clustering and decision trees |
Back to 2010 Spring ECE 662 mboutin