m
 
(12 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
Lectures discussing Support Vector Machines: [[Lecture 11 - Fischer's Linear Discriminant again_OldKiwi|Lecture 11]], [[Lecture 12 - Support Vector Machine and Quadratic Optimization Problem_OldKiwi|Lecture 12]] and [[Lecture 13 - Kernel function for SVMs and ANNs introduction_OldKiwi|Lecture 13]].
 
Lectures discussing Support Vector Machines: [[Lecture 11 - Fischer's Linear Discriminant again_OldKiwi|Lecture 11]], [[Lecture 12 - Support Vector Machine and Quadratic Optimization Problem_OldKiwi|Lecture 12]] and [[Lecture 13 - Kernel function for SVMs and ANNs introduction_OldKiwi|Lecture 13]].
  
* Other related  sites:
+
Relevant Homework [[Homework 2_OldKiwi]]
  
* http://en.wikipedia.org/wiki/Support_vector_machine
+
== Useful Links ==
  
`A Tutorial on Support Vector Machines for Pattern Recognition <http://citeseer.ist.psu.edu/cache/papers/cs/26235/http:zSzzSzwww.isi.uu.nlzSzMeetingszSz..zSzTGVzSzfinal1.pdf/burges98tutorial.pdf>`_
 
  
`Support Vector Machines for 3D Object Recognition
+
* [http://en.wikipedia.org/wiki/Support_vector_machine Support Vector Machine on Wikipedia]
<http://ieeexplore.ieee.org/iel4/34/15030/00683777.pdf?isnumber=15030&prod=JNL&arnumber=683777&arSt=637&ared=646&arAuthor=Pontil%2C+M.%3B+Verri%2C+A.>`_
+
  
Here is a good webpage containing links to effective Support Vector Machines packages, written in C/C++. Matlab, applicable for binary/multi- calss classifications.
+
* [http://www.csie.ntu.edu.tw/~cjlin/libsvm/ LIBSVM ] - A library of SVM software, including both C and Matlab code.  Various interfaces through several platforms available as well.
<http://www.svms.org/software.html>
+
  
Purdue link: http://www2.lib.purdue.edu:2483/10.1145/130385.130401
+
* [http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf A Practical Guide to Support Vector Classification]: Mainly created for beginners, it quickly explains how to use the libsvm.
  
ACM link: http://doi.acm.org/10.1145/130385.130401
+
* [http://citeseer.ist.psu.edu/cache/papers/cs/26235/http:zSzzSzwww.isi.uu.nlzSzMeetingszSz..zSzTGVzSzfinal1.pdf/burges98tutorial.pdf A Tutorial on Support Vector Machines for Pattern Recognition]
  
* Journal References
+
*[http://ieeexplore.ieee.org/iel4/34/15030/00683777.pdf?isnumber=15030&prod=JNL&arnumber=683777&arSt=637&ared=646&arAuthor=Pontil%2C+M.%3B+Verri%2C+A. Support Vector Machines for 3D Object Recognition]
  
M.A. Aizerman, E.M. Braverman, L.I. Rozoner. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Control, 1964, Vol. 25, pp. 821-837.
+
* [http://www.svms.org/software.html svms.org]:Here is a good webpage containing links to effective Support Vector Machines packages, written in C/C++. Matlab, applicable for binary/multi- calss classifications.
  
Bernhard E. Boser and Isabelle M. Guyon and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. COLT '92: Proceedings of the fifth annual workshop on Computational learning theory. 1992. Pittsburgh, PA.
+
* [http://www2.lib.purdue.edu:2483/10.1145/130385.130401 Purdue link to SVM]
 +
 
 +
* [http://doi.acm.org/10.1145/130385.130401 ACM link to SVM]
 +
 
 +
* [http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html SVM and Kernel Methods Matlab Toolbox]
 +
 
 +
* [http://www.support-vector-machines.org/SVM_soft.html SVM - Support Vector Machines Software]
 +
 
 +
* [http://www.cs.iastate.edu/~dcaragea/SVMVis/data_sets.htm Some SVM sample data ]
 +
 
 +
* [http://www.mathworks.com/access/helpdesk/help/toolbox/bioinfo/index.html?/access/helpdesk/help/toolbox/bioinfo/ref/svmclassify.html&http://www.mathworks.com/cgi-bin/texis/webinator/search/ SVM Matlab Bioinformatics Toolbox ]
 +
 
 +
== Journal References ==
 +
 
 +
* M.A. Aizerman, E.M. Braverman, L.I. Rozoner. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Control, 1964, Vol. 25, pp. 821-837.
 +
 
 +
* Bernhard E. Boser and Isabelle M. Guyon and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. COLT '92: Proceedings of the fifth annual workshop on Computational learning theory. 1992. Pittsburgh, PA.
 +
 
 +
[[Category:ECE662]]

Latest revision as of 07:48, 10 April 2008

This page and its subtopics discusses about Support Vector Machines

Lectures discussing Support Vector Machines: Lecture 11, Lecture 12 and Lecture 13.

Relevant Homework Homework 2_OldKiwi

Useful Links

  • LIBSVM - A library of SVM software, including both C and Matlab code. Various interfaces through several platforms available as well.
  • svms.org:Here is a good webpage containing links to effective Support Vector Machines packages, written in C/C++. Matlab, applicable for binary/multi- calss classifications.

Journal References

  • M.A. Aizerman, E.M. Braverman, L.I. Rozoner. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Control, 1964, Vol. 25, pp. 821-837.
  • Bernhard E. Boser and Isabelle M. Guyon and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. COLT '92: Proceedings of the fifth annual workshop on Computational learning theory. 1992. Pittsburgh, PA.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang