Line 112: Line 112:
  
 
== Some Laplace Transform Pairs ==
 
== Some Laplace Transform Pairs ==
{{:LaplaceTransforms}}
+
{{:LaplaceTransforms_ECE301Fall2008mboutin}}
 
*[[Laplace Pairs 1_ECE301Fall2008mboutin| (1)]]{{:Laplace Pairs 1_ECE301Fall2008mboutin}}
 
*[[Laplace Pairs 1_ECE301Fall2008mboutin| (1)]]{{:Laplace Pairs 1_ECE301Fall2008mboutin}}
 
*[[Laplace Pairs 2_ECE301Fall2008mboutin| (2)]]{{:Laplace Pairs 2_ECE301Fall2008mboutin}}
 
*[[Laplace Pairs 2_ECE301Fall2008mboutin| (2)]]{{:Laplace Pairs 2_ECE301Fall2008mboutin}}

Latest revision as of 06:20, 5 February 2009


Please follow the following model to add your formulas:

Create a page with a descriptive name and type your formula on this page using latex. Then write
{{:name of the page with your formula}}

in the place where you want your formula to appear in this table. (Look at the syntax of the geometric series below for an example.) This will allow other people to refer to your formula later on (by refering to the corresponding page) while still being able to view all formulas on this page.

General Purpose Formulas
Series
Finite Geometric Series Formula_ECE301Fall2008mboutin $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $
Infinite Geometric Series Formula_ECE301Fall2008mboutin $ \sum_{k=0}^\infty x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $
Euler's Formula
Complex exponential in terms of sinusoidal signals_ECE301Fall2008mboutin $ e^{jw_0t}=cosw_0t+jsinw_0t $
Cosine function in terms of complex exponential_ECE301Fall2008mboutin $ cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2} $
Sine function in terms of complex exponential_ECE301Fall2008mboutin $ sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j} $
Other
sinc function_ECE301Fall2008mboutin $ sinc(\theta)=\frac{sin(\pi\theta)}{\pi\theta} $
Discrete-Time Domain
Useful Formulas
DT Fourier Transform_ECE301Fall2008mboutin $ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $
DT Inverse Fourier Transform_ECE301Fall2008mboutin $ \,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\, $
DT Fourier Transform Pairs
DT Fourier Transform Pair_ECE301Fall2008mboutin $ e^{jw_0n} \longrightarrow 2\pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $
DT Fourier an_ECE301Fall2008mboutin $ a^{n} u[n], |a|<1 \longrightarrow \frac{1}{1-ae^{-j\omega}} \ $

DT Fourier Transform Properties

Parsevel Relationship for DT signals

Continuous-time domain

Useful Formulas

CT Fourier Transform Pairs

  • (1) $ x(t)= \sum^{\infty}_{k=-\infty} a_{k}e^{jkw_{0}t} \longrightarrow {\mathcal X}(\omega)= 2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0})\, $
  • (2)$ x(t)=\sum^{\infty}_{n=-\infty} \delta(t-nT) \longrightarrow {\mathcal X}(\omega)= \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T})\, $
  • (3) $ x(t)=\cos(\omega_0 t) \longrightarrow {\mathcal X}(\omega)=\pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] $
  • (4) $ x(t)=sin(\omega_0 t) \longrightarrow {\mathcal X}(\omega)=\frac{\pi}{j} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] $
  • (5) $ x(t)=\delta (t)\longrightarrow {\mathcal X}(\omega)=1 \! $
  • (6) $ x(t)= u(t)\longrightarrow {\mathcal X}(\omega)= \frac{1}{jw} + \pi \delta (w) \! $
  • (7) $ x(t)=\delta (t-t_0)\longrightarrow {\mathcal X}(\omega)= e^{jwt_0} \! $
  • (8) $ x(t)=e^{-at}u(t),\text{ where }a\text{ is real,}a>0 \longrightarrow {\mathcal X}(\omega)=\frac{1}{a+j\omega} $
  • (9) $ x(t)=e^{j\omega_0 t} \longrightarrow {\mathcal X}(\omega)= 2\pi \delta (\omega - \omega_0) $
  • (10) $ x(t)=te^{-at}u(t), \text{ where }a\text{ is real,} a>0 \longrightarrow {\mathcal X}(\omega)=(\frac{1}{a+j\omega})^2 $
  • (11) $ x(t)=\left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \longrightarrow {\mathcal X}(\omega)=\frac{2 \sin \left( T \omega \right)}{\omega} $
  • (12) $ x(t)=\frac{2 \sin \left( W t \right)}{\pi t } \longrightarrow \mathcal{X}(\omega)=\left\{\begin{array}{ll}1, & \text{ if }|\omega| <W,\\ 0, & \text{else.}\end{array} \right. \ $

CT Fourier Transform Properties

  • CT_Fourier_Int/Diff_ECE301Fall2008mboutin$ \; \; \; (1)\frac{dx(t)}{dt} \rightarrow j\omega \Chi (\omega)\; \; \; \; \; \; (2) \int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{1}{j\omega}\Chi (\omega) + \pi \Chi (0) \delta (\omega) $

$ F(x(t)y(t))=\frac{1}{2\pi}X(j\omega)*Y(j\omega)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\theta)Y(j(\omega-\theta))d\theta $

$ F(x(t)) = X(w) = 2\pi x(-w) \! $

if

$ \ F(x(t)) = X(w) $

then,

$ \ F(x(t)^*) = X^*(-w) $

Parsevel Relationship for CT signals

  • put a property here following syntax described at top of page.

Some Laplace Transform Pairs

Laplace Transform Pairs
Transform Pair Signal Transform ROC
1 $ \,\!\delta(t) $ $ 1 $ $ All\,\, s $
2 $ \,\! u(t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
3 $ \,\! -u(-t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
4 $ \frac{t^{n-1}}{(n-1)!}u(t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
5 $ -\frac{t^{n-1}}{(n-1)!}u(-t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
6 $ \,\!e^{-\alpha t}u(t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
7 $ \,\! -e^{-\alpha t}u(-t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
8 $ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
9 $ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
10 $ \,\!\delta (t - T) $ $ \,\! e^{-sT} $ $ All\,\, s $
11 $ \,\![cos( \omega_0 t)]u(t) $ $ \frac{s}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
12 $ \,\![sin( \omega_0 t)]u(t) $ $ \frac{\omega_0}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
13 $ \,\![e^{-\alpha t}cos( \omega_0 t)]u(t) $ $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
14 $ \,\![e^{-\alpha t}sin( \omega_0 t)]u(t) $ $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
15 $ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ $ \,\!s^{n} $ $ All\,\, s $
16 $ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
  • (1)$ \delta(t) \leftrightarrow 1 $, for all s
  • (2)$ \ u(t) \leftrightarrow \frac{1}{s} $, for Re{s} > 0
  • (3)$ \ -u(-t) \leftrightarrow \frac{1}{s} $, for Re{s} < 0
  • (4)$ \frac{t^{n - 1}}{(n - 1)!}u(t) \leftrightarrow \frac{1}{s^{n}} $, for Re{s} > 0
  • (5)$ - \frac{t^{n - 1}}{(n - 1)!}u(-t) \leftrightarrow \frac{1}{s^{n}} $, for Re{s} < 0
  • (6)$ \ e^{\alpha t }u(t) \leftrightarrow \frac{1}{s + \alpha} $, for Re{s} > $ \ - \alpha $
  • (7)$ \ -e^{\alpha t }u(-t) \leftrightarrow \frac{1}{s + \alpha} $, for Re{s} < $ \ - \alpha $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood