$ \ x(t) =\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2 \pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega $
$ \ x(t) =\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2 \pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega $