(2 intermediate revisions by the same user not shown)
Line 14: Line 14:
 
*Linear Equations and Linear Transformations
 
*Linear Equations and Linear Transformations
 
**Introduction to [[Matrix]]
 
**Introduction to [[Matrix]]
**[[Matrix Multiplication|Matrix multiplication version 1]] and [[Matrix_multiplication_MA265F10Walther|version 2]]
+
**[[Matrix Multiplication|Matrix multiplication Version 1]] and [[Matrix_multiplication_MA265F10Walther|Version 2]]
**[[Inverse of a Matrix]]
+
**[[Inverse of a Matrix|Inverse of a Matrix Version 1]] and  [[Inverse_MA265F10Walther|Version 2]]
 
**Introduction to [[Linear transformation|Linear Transformation]]s
 
**Introduction to [[Linear transformation|Linear Transformation]]s
 
* Subspaces of <math>R^n</math>  
 
* Subspaces of <math>R^n</math>  
Line 31: Line 31:
 
**Another intro to [[On_Determinants|Determinants]]
 
**Another intro to [[On_Determinants|Determinants]]
 
**What are some [[properties of the determinant]]?
 
**What are some [[properties of the determinant]]?
*The [[Inverse_MA265F10Walther|inverse of a matrix]]
 
 
----
 
----
 
==Beyond the Basics==
 
==Beyond the Basics==
Line 46: Line 45:
 
----
 
----
 
==Applications==
 
==Applications==
 +
*[[ECE637_tomographic_reconstruction_coordinate_rotation_S13_mhossain|Coordinate Rotations]]
 
*[[ECE662_Whitening_and_Coloring_Transforms_S14_MH|Whitening and coloring transforms]]
 
*[[ECE662_Whitening_and_Coloring_Transforms_S14_MH|Whitening and coloring transforms]]
 
*[[Implementation_of_the_Divide_and_Conquer_DFT_via_Matrices|"divide and conquer" Discrete Fourier Transform (DFT)]]
 
*[[Implementation_of_the_Divide_and_Conquer_DFT_via_Matrices|"divide and conquer" Discrete Fourier Transform (DFT)]]
----
+
 
Click [[:Category:linear algebra|HERE]] to view all pages in the [[:Category:linear algebra|"linear algebra" Category]]
+
 
----
 
----
 
[[linear_algebra|Back to "Linear Algebra" topic]]
 
[[linear_algebra|Back to "Linear Algebra" topic]]

Latest revision as of 11:25, 27 March 2015


"Linear Algebra"

Tutorials and other Learning Material


The Basics


Beyond the Basics


Applications


Back to "Linear Algebra" topic

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood