What is a "kernel" in linear algebra?

A vector v is in the kernel of a matrix A if and only if Av=0. Thus, the kernel is the span of all these vectors.

Similarly, a vector v is in the kernel of a linear transformation T if and only if T(v)=0.

For example the kernel of this matrix (call it A)

$ \begin{bmatrix} 1 & 0 & 0\\ 0 & 2 & 1\end{bmatrix} $

is the following matrix, where s can be any number:

$ \begin{bmatrix} 0 \\ -s\\ 2s\end{bmatrix} $

Verification using matrix multiplaction: the first entry is $ 0*1-s*0+2s*0=0 $ and the second entry is $ 0*0-s*2+2s*1=0 $.

$ \begin{bmatrix} 1 & 0 & 0\\ 0 & 2 & 1\end{bmatrix}* \begin{bmatrix} 0 \\ -s\\ 2s\end{bmatrix}= \begin{bmatrix} 0 \\ 0\end{bmatrix} $

A related concept is that of image of a matrix A.

The dimensions of the image and the kernel of A are related in the Rank Nullity Theorem


Back to Linear Algebra Resource

Back to MA351

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett