Line 4: Line 4:
  
  
 +
{|
 +
|-
 +
! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" colspan="2" | CT Fourier Transform Pairs and Properties (frequency <span class="texhtml">f</span> in hertz per time unit) [[More on CT Fourier transform|(info)]]
 +
|-
 +
! style="background: none repeat scroll 0% 0% rgb(238, 188, 126);" colspan="2" | (Click title to see explanation on how to obtain the formula in terms of f in hertz)
 +
|-
 +
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Definition CT Fourier Transform and its Inverse
 +
|-
 +
| align="right" style="padding-right: 1em;" |  [[Explain_CTFT|CT Fourier Transform]]
 +
| <math>X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_InverseCTFT|Inverse CT Fourier Transform]]
 +
| <math>\, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \,</math>
 +
|}
  
Put your content here . . .
+
{|
 +
|-
 +
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Pairs
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <span class="texhtml">''x''(''t'')</span>
 +
| <math>\longrightarrow</math>
 +
| <math> X(f) </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_unitimpulse|CTFT of a unit impulse]]
 +
| <math>\delta (t)\ </math>
 +
|
 +
| <math> 1 \! \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_CTFT_shifted_unitimpulse|CTFT of a shifted unit impulse]]
 +
| <math>\delta (t-t_0)\ </math>
 +
|
 +
| <math>e^{-i2\pi ft_0}</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_CTFT_cpxexp|CTFT of a complex exponential]]
 +
| <math>e^{iw_0t}</math>
 +
|
 +
| <math> \delta (f - \frac{\omega_0}{2\pi}) \ </math>
 +
|
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math>e^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math>
 +
|
 +
| <math>\frac{1}{a+i2\pi f}</math>
 +
|
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math>te^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math>
 +
|
 +
| <math>\left( \frac{1}{a+i2\pi f}\right)^2</math>
 +
|
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_CTFT_cos|CTFT of a cosine]]
 +
| <math>\cos(\omega_0 t) \ </math>
 +
|
 +
| <math> \frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \ </math>
 +
|
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_CTFT_sin|CTFT of a sine]]
 +
| <math>sin(\omega_0 t)  \ </math>
 +
|
 +
| <math>\frac{1}{2i} \left[\delta (f - \frac{\omega_0}{2\pi}) - \delta (f + \frac{\omega_0}{2\pi})\right]</math>
 +
|
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_CTFT_rect|CTFT of a rect]]
 +
| <math>\left\{\begin{array}{ll}1, &  \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ </math>
 +
|
 +
| <math> \frac{\sin \left(2\pi Tf \right)}{\pi f}  \ </math>
 +
|
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_CTFT_sinc|CTFT of a sinc]]
 +
| <math>\frac{2 \sin \left( W t  \right)}{\pi t }  \ </math>
 +
|
 +
| <math>\left\{\begin{array}{ll}1, &  \text{ if }|f| <\frac{W}{2\pi},\\ 0, & \text{else.}\end{array} \right.  \ </math>
 +
|
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_CTFT_periofunc|CTFT of a periodic function]]
 +
| <math>\sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t}</math>
 +
|
 +
| <math>\sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) \ </math>
 +
|
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_CTFT_impulsetrain|CTFT of an impulse train]]
 +
| <math>\sum^{\infty}_{n=-\infty} \delta(t-nT)  \ </math>
 +
|
 +
| <math>\frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T}) \ </math>
 +
|
 +
|}
 +
 
 +
{|
 +
|-
 +
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Properties
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <span class="texhtml">''x''(''t'')</span>
 +
| <math>\longrightarrow</math>
 +
| <math> X(f) </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_CTFT_multiprop|multiplication property]]
 +
| <math>x(t)y(t) \ </math>
 +
|
 +
| <math> X(f)*Y(f) =\int_{-\infty}^{\infty} X(\theta)Y(f-\theta)d\theta</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_CTFT_convprop|convolution property]]
 +
| <math>x(t)*y(t) \!</math>
 +
|
 +
| <math> X(f)Y(f) \!</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_CTFT_timerev|time reversal]]
 +
| <math>\ x(-t) </math>
 +
|
 +
| <math>\ X(-f)</math>
 +
|}
 +
 
 +
{|
 +
|-
 +
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other CT Fourier Transform Properties
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Explain_CTFT_Parseval|Parseval's relation]]
 +
| <math>\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df</math>
 +
|}
 +
 
 +
----
 +
 
 +
[[MegaCollectiveTableTrial1|Back to Collective Table]] | [[2010_Fall_ECE_438_Boutin|Back to 438 main page]]
 +
 
 +
[[Category:Formulas]]
  
  

Revision as of 02:39, 4 September 2013


HW1_Solution_ECE438F13

CT Fourier Transform Pairs and Properties (frequency f in hertz per time unit) (info)
(Click title to see explanation on how to obtain the formula in terms of f in hertz)
Definition CT Fourier Transform and its Inverse
CT Fourier Transform $ X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $
Inverse CT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \, $
CT Fourier Transform Pairs
x(t) $ \longrightarrow $ $ X(f) $
CTFT of a unit impulse $ \delta (t)\ $ $ 1 \! \ $
CTFT of a shifted unit impulse $ \delta (t-t_0)\ $ $ e^{-i2\pi ft_0} $
CTFT of a complex exponential $ e^{iw_0t} $ $ \delta (f - \frac{\omega_0}{2\pi}) \ $
$ e^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ $ \frac{1}{a+i2\pi f} $
$ te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ $ \left( \frac{1}{a+i2\pi f}\right)^2 $
CTFT of a cosine $ \cos(\omega_0 t) \ $ $ \frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \ $
CTFT of a sine $ sin(\omega_0 t) \ $ $ \frac{1}{2i} \left[\delta (f - \frac{\omega_0}{2\pi}) - \delta (f + \frac{\omega_0}{2\pi})\right] $
CTFT of a rect $ \left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ $ $ \frac{\sin \left(2\pi Tf \right)}{\pi f} \ $
CTFT of a sinc $ \frac{2 \sin \left( W t \right)}{\pi t } \ $ $ \left\{\begin{array}{ll}1, & \text{ if }|f| <\frac{W}{2\pi},\\ 0, & \text{else.}\end{array} \right. \ $
CTFT of a periodic function $ \sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $ $ \sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) \ $
CTFT of an impulse train $ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ $ \frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T}) \ $
CT Fourier Transform Properties
x(t) $ \longrightarrow $ $ X(f) $
multiplication property $ x(t)y(t) \ $ $ X(f)*Y(f) =\int_{-\infty}^{\infty} X(\theta)Y(f-\theta)d\theta $
convolution property $ x(t)*y(t) \! $ $ X(f)Y(f) \! $
time reversal $ \ x(-t) $ $ \ X(-f) $
Other CT Fourier Transform Properties
Parseval's relation $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df $

Back to Collective Table | Back to 438 main pageBack to 2013 Fall ECE 438 Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang