(85 intermediate revisions by 7 users not shown)
Line 1: Line 1:
=Rhea Section for ECE 438 Professor Boutin, Fall 2011=
+
[[Category:ECE438Fall2011Boutin]]
 +
[[Category:ECE438]]
 +
[[Category:ECE]]
 +
[[Category:signal processing]]
  
 +
= [[ECE438|ECE 438]]: Digital Signal Processing with Applications  =
  
Put your page content here . . .
+
== Professor Boutin, Fall 2011  ==
  
[[Category:ECE438Fall2011Boutin]]
+
----
 +
<div style="background: none repeat scroll 0% 0% rgb(238, 238, 255); border-width: 1px 1px 1px 4px; border-style: solid; border-color: rgb(68, 68, 136) rgb(68, 68, 136) rgb(68, 68, 136) rgb(51, 51, 136); width: 30em; padding: 2em; margin: auto; ">
 +
Message area:
 +
Bonus point opportunity
 +
 
 +
Yes, I will be holding my regular office hour (2-3pm) today. -pm
 +
 
 +
You will receive 0.5% bonus on your total course grade if you do the following:
 +
*Fill out the official course evaluation online.
 +
*Write a comment for the peer legacy section of [[Peer_Legacy_ENGR131|Engineering 131 and 132]]. (It's ok if you took it when it had a different number: just write that number as part of your review/comment/advice.
 +
*Write a comment for the peer legacy of at least one other course [[Peer_legacy|here]].
 +
*Send me an email indicating that you have done all this.
 +
</div>
 +
----
 +
 
 +
== Course Information  ==
 +
 
 +
*Instructor: [[User:Mboutin|Prof. Mimi]]
 +
**Office: MSEE 342
 +
**[[Open office hours mboutin|Office hours]] are listed [[Open office hours mboutin|here]].
 +
*Teaching Assistant: Rui Zhao
 +
**Email: zhao148@purdue.edu
 +
**Office: MSEE 190
 +
**Office Hours: M 10:30am-11:30am, W 10:00am-11:00am, R 1:30pm-2:30pm
 +
*Teaching Assistant: Trey Shenk
 +
**Email: trey.shenk at gmail dot com
 +
**Office: MSEE 190
 +
**Office Hours: F 11:40am - 1:30pm
 +
*[[Lecture Schedule ECE438Fall11 Boutin|Schedule]]
 +
*[[Media:SyllabusECE438F11boutin.pdf|Course Syllabus]]
 +
*Important Dates:
 +
**Test 1, Friday October 7, 2010.
 +
**Test 2, Friday December 2, 2010.
 +
**Final, TBA
 +
 
 +
----
 +
== Getting ready for the Exams ==
 +
 
 +
*Past Exams From Spring 2009 (Note: slightly different ordering of the material)
 +
**[http://cobweb.ecn.purdue.edu/~mboutin/PastExams/438S09midterm1.pdf midterm1]
 +
**[http://cobweb.ecn.purdue.edu/~mboutin/PastExams/438S09midterm2.pdf midterm2] Note: in question one, x[n] should be <math> 3^n</math> for negative n's.
 +
**[http://cobweb.ecn.purdue.edu/~mboutin/PastExams/438S09midterm3.pdf midterm3]
 +
**[http://cobweb.ecn.purdue.edu/~mboutin/PastExams/438S09final.pdf final]
 +
 
 +
*Past Exams From Fall 2009
 +
**[http://cobweb.ecn.purdue.edu/~mboutin/PastExams/438F09midterm1.pdf midterm1]
 +
**[http://cobweb.ecn.purdue.edu/~mboutin/PastExams/438F09midterm2.pdf midterm2]
 +
**[http://cobweb.ecn.purdue.edu/~mboutin/PastExams/438F09final.pdf final]
 +
 
 +
*Practice Problems
 +
**[[Practice_question_1_eECE439F10|Practice Question 1 (on DFT computation)]]
 +
**[[Practice_Question_2_ECE439F10|Practice Question 2 (on z-transform computation)]]
 +
**[[Practice_Question_3_ECE439F10|Practice Question 3 (on inverse z-transform computation)]]
 +
**[[Practice_Question_4_ECE438F10|Practice Question 4 (frequency domain view of sampling)]]
 +
**[[Practice_Question_5_ECE438F10|Practice Question 5 (filter design)]]
 +
----
 +
 
 +
== Lab Wiki  ==
 +
 
 +
[[ECE438 Lab Fall 2011|Here]].
 +
 
 +
----
 +
 
 +
== Resources  ==
 +
 
 +
*[https://www.projectrhea.org/rhea/images/8/8d/Latex_1.pdf A beginner’s guide to LaTeX (Chapter 1)]. By&nbsp;Krithika Chandrasekar.
 +
*<span style="color: red;"> NEW!</span> [https://projectrhea.org/liaisons/images/c/c7/Latex_2.pdf A beginner’s guide to LaTeX (Chapter 2)]. By&nbsp;Krithika Chandrasekar.
 +
*[[Collective Table of Formulas|Rhea's Collective Table of Formulas]]. Add your formulas now!
 +
*[[How to Enter Math in Rhea|Cheat Sheet for Rhea Math]]
 +
*[https://www.projectrhea.org/rhea/images/9/91/Zpgui3.m.zip zpgui3.m] A MATLAB GUI showing the effect of poles and zeros during filter design.
 +
 
 +
----
 +
 
 +
== Lecture Blog  ==
 +
 
 +
[[Lecture1ECE438F11|Lecture 1]], [[Lecture2ECE438F11|2]], [[Lecture3ECE438F11|3]] ,[[Lecture4ECE438F11|4]] ,[[Lecture5ECE438F11|5]] ,[[Lecture6ECE438F11|6]] ,[[Lecture7ECE438F11|7]] ,[[Lecture8ECE438F11|8]] ,[[Lecture9ECE438F11|9]] ,[[Lecture10ECE438F11|10]] ,[[Lecture11ECE438F11|11]] ,[[Lecture12ECE438F11|12]] ,[[Lecture13ECE438F11|13]] ,[[Lecture14ECE438F11|14]] ,[[Lecture15ECE438F11|15]] ,[[Lecture16ECE438F11|16]] ,[[Lecture17ECE438F11|17]] ,[[Lecture18ECE438F11|18]] ,[[Lecture19ECE438F11|19]] ,[[Lecture20ECE438F11|20]] ,[[Lecture21ECE438F11|21]] ,[[Lecture22ECE438F11|22]] ,[[Lecture23ECE438F11|23]] ,[[Lecture24ECE438F11|24]] ,[[Lecture25ECE438F11|25]] ,[[Lecture26ECE438F11|26]] ,[[Lecture27ECE438F11|27]] ,[[Lecture28ECE438F11|28]] ,[[Lecture29ECE438F11|29]] ,[[Lecture30ECE438F11|30]] ,[[Lecture31ECE438F11|31]] ,[[Lecture32ECE438F11|32]] ,[[Lecture33ECE438F11|33]] ,[[Lecture34ECE438F11|34]] ,[[Lecture35ECE438F11|35]] ,[[Lecture36ECE438F11|36]] ,[[Lecture37ECE438F11|37]] ,[[Lecture38ECE438F11|38]] ,[[Lecture39ECE438F11|39]] ,[[Lecture40ECE438F11|40]] ,[[Lecture41ECE438F11|41]] ,[[Lecture42ECE438F11|42]] ,[[Lecture43ECE438F11|43]] ,[[Lecture44ECE438F11|44]], [[final_examECE438F11|final exam]] .
 +
 
 +
----
 +
 
 +
== Collectively Solved [[:Category:Problem_solving|Practice Problems]]  ==
 +
 
 +
*Learn how to use Rhea
 +
**[[Practice writing equations ECE438F11|Practice writing equations on Rhea]]
 +
 
 +
*Basic material and review
 +
**[[Norm of a complex exponential ECE438F11|What is the norm of a complex exponential?]]
 +
 
 +
*Summation exercises
 +
**[[Practice summation n delta of n ECE438F11|Compute this sum]]
 +
**[[Practice summation shifted geometric ECE438F11|Compute this other sum]]
 +
**[[Practice summation finite inpulse train|... and this other sum]]
 +
**[[Problem Generalized Geometric Series Formula ECE438F11|When is this summation formula valid?]]
 +
 
 +
*CTFT exercises
 +
**[[Practice CTFT from omega to f step function|Obtain the Fourier transform in terms of f of a step function (from FT in terms of omega)]]
 +
**[[Practice CTFT computation rect and sinc ECE438F11|Compute the Fourier transform of a rect and a sinc]]
 +
**[[Practice CTFT complex exponential ECE438F11|What is the Fourier transform of a complex exponential?]]
 +
 
 +
*DTFT exercise
 +
**[[Practice DTFT computation cosine ECE438F11|What is the Fourier transform of this DT cosine?]]
 +
**[[Practice DTFT computation rect ECE438F11|What is the Fourier transform of this DT rect function?]]
 +
 
 +
*Sampling and Nyquist Rate
 +
**[[Practice sampling pure frequencies A ECE438F1|Playing an A 440 with MATLAB]]
 +
**[[Practice_problem_finding_band_limited_signals_ECE438F11|What kind of signals are band limited?]]
 +
 
 +
*Z-transform and inverse z-transform
 +
**[[Practice prove z transform scaling property ECE438F11|Prove the scaling property of the z-transform]]
 +
**[[Practice compute z transform windowed function|compute the z-transform of this function]]
 +
 
 +
*DFT
 +
**[[Compute DFT practice no1 ECE438F11|Compute this DFT]]
 +
**[[Compute DFT practice no2 ECE438F11|Compute this other DFT]]
 +
**[[Exercise_effect_of_zero_padding_on_DFT_ECE438F11|What is the effect of zero padding on the DFT?]]
 +
 
 +
*Spectral Analysis of continuous-space (2D) signals
 +
**[[Obtain_CSFT_complex_exponential|Obtain the continuous-space Fourier transform of a complex exponential]]
 +
**[[Compute_CSFT_of_2D_rect_function_ECE438F11|Obtain the continuous-space Fourier transform of a 2D rect]]
 +
**[[Compute_CSFT_of_2D_sinc_function_ECE438F11|Obtain the continuous-space Fourier transform of a 2D sinc]]
 +
 
 +
*Spectral Analysis of discrete-space (2D) signals
 +
**[[Obtain_DSFT_rectangle|Obtain the discrete-space Fourier transform of a rectangle]] <span style="color: red;">
 +
**[[Compute_DSFT_product_two_step_functions_ECE438F11|Compute the discrete-space Fourier transform of this function]]
 +
**[[Compute_DSFT_cosine_ECE438F11|Compute the discrete-space Fourier transform of this cosine]]
 +
----
 +
== Homework  ==
 +
*[[Hw1 ECE438F11|HW1]] due Wednesday August 31, 2011. [[Hw1 ECE438F11sln|Solution]]
 +
*[[Hw2 ECE438F11|HW2]] due Wednesday September 6, 2011. [[Hw2 ECE438F11sln|Example Solution]]
 +
*[[Hw3 ECE438F11|HW3]] due Wednesday September 28, 2011 (extended to Sept 30). [[Hw3 ECE438F11sln|Solution]]
 +
*[[Hw4 ECE438F11|HW4]] due Wednesday October 5, 2011. [[Hw4 ECE438F11sln|Solution]]
 +
*[[Hw5 ECE438F11|HW5]] due Wednesday October 19, 2011. [[Hw5_ECE438F11sln|Solution]]
 +
*[[Hw6 ECE438F11|HW6]] due Wednesday October 26, 2011. [[Hw6_ECE438F11sln|Solution]]
 +
*[[Hw7 ECE438F11|HW7]] due Wednesday November 9, 2011.
 +
*[[Hw8 ECE438F11|HW8]] due Wednesday November 30, 2011. [[Hw8_ECE438F11sln|Solution]]
 +
----
 +
 
 +
== Your turn! A bonus point opportunity  ==
 +
 
 +
Students in ECE438 Fall 2011 have the opportunity to earn up to a 3% bonus by contributing a Rhea page on a subject related to digital signal processing. To pick a subject, simply write your name next to it. Your page will be graded based on content as well as interactions with other people (page views, comments/questions on the page, etc.). The number of links to other courses and subjects will also be taken into account: the more the merrier! Please do not simply copy the lecture notes and do not plagiarize. Read [[Rhea:Copyrights|Rhea's copyright policy]] before proceeding.
 +
 
 +
{| border="1" class="wikitable"
 +
|-
 +
! Topic Number
 +
! Topic Description
 +
! Student Name
 +
|-
 +
| 1
 +
| Something related to CT or DT Fourier transform
 +
| Name
 +
|-
 +
| 2
 +
| Something related to Z-transform
 +
| Name
 +
|-
 +
| 3
 +
| [[Upsampling and downsampling lab]]
 +
| Jun Zhang, Tianhe Liu
 +
|-
 +
| 4
 +
| Something related to discrete Fourier transform
 +
| Name
 +
|-
 +
| 5
 +
| Something related to Fast Fourier transform]]
 +
| Name
 +
|-
 +
| 6
 +
| Something related to Filtering
 +
| Name
 +
|-
 +
| 7
 +
| Something related to Speech analysis or processing
 +
| Name
 +
|-
 +
| 8
 +
| Something related to Spectral Analysis of 2D signals]]
 +
| Name
 +
|-
 +
| 9
 +
| [[Similarity analysis of images]]
 +
| Yang Zhu
 +
|-
 +
| 10
 +
| Something related to Quantization
 +
| Name
 +
|-
 +
| 11
 +
| [[Audio Signal Processing with Down-sampler and LPF]]
 +
| Bo Yuan, Wei Wang
 +
|-
 +
| 12
 +
| [[Audio Signal Generating and Processing Project]]
 +
| Yimin Xiao
 +
|-
 +
| 12
 +
| Student blog
 +
| Name (s)
 +
|}
 +
 
 +
 
 +
 
 +
 
 +
 
 +
----
 +
 
 +
[[ECE438|Back to ECE438]]
 +
 
 +
[[Course List|Back to Semester/Instructor Specific Course Wikis]]

Latest revision as of 02:50, 31 August 2013


ECE 438: Digital Signal Processing with Applications

Professor Boutin, Fall 2011


Message area: Bonus point opportunity

Yes, I will be holding my regular office hour (2-3pm) today. -pm

You will receive 0.5% bonus on your total course grade if you do the following:

  • Fill out the official course evaluation online.
  • Write a comment for the peer legacy section of Engineering 131 and 132. (It's ok if you took it when it had a different number: just write that number as part of your review/comment/advice.
  • Write a comment for the peer legacy of at least one other course here.
  • Send me an email indicating that you have done all this.

Course Information

  • Instructor: Prof. Mimi
  • Teaching Assistant: Rui Zhao
    • Email: zhao148@purdue.edu
    • Office: MSEE 190
    • Office Hours: M 10:30am-11:30am, W 10:00am-11:00am, R 1:30pm-2:30pm
  • Teaching Assistant: Trey Shenk
    • Email: trey.shenk at gmail dot com
    • Office: MSEE 190
    • Office Hours: F 11:40am - 1:30pm
  • Schedule
  • Course Syllabus
  • Important Dates:
    • Test 1, Friday October 7, 2010.
    • Test 2, Friday December 2, 2010.
    • Final, TBA

Getting ready for the Exams

  • Past Exams From Spring 2009 (Note: slightly different ordering of the material)

Lab Wiki

Here.


Resources


Lecture Blog

Lecture 1, 2, 3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,34 ,35 ,36 ,37 ,38 ,39 ,40 ,41 ,42 ,43 ,44, final exam .


Collectively Solved Practice Problems


Homework


Your turn! A bonus point opportunity

Students in ECE438 Fall 2011 have the opportunity to earn up to a 3% bonus by contributing a Rhea page on a subject related to digital signal processing. To pick a subject, simply write your name next to it. Your page will be graded based on content as well as interactions with other people (page views, comments/questions on the page, etc.). The number of links to other courses and subjects will also be taken into account: the more the merrier! Please do not simply copy the lecture notes and do not plagiarize. Read Rhea's copyright policy before proceeding.

Topic Number Topic Description Student Name
1 Something related to CT or DT Fourier transform Name
2 Something related to Z-transform Name
3 Upsampling and downsampling lab Jun Zhang, Tianhe Liu
4 Something related to discrete Fourier transform Name
5 Something related to Fast Fourier transform]] Name
6 Something related to Filtering Name
7 Something related to Speech analysis or processing Name
8 Something related to Spectral Analysis of 2D signals]] Name
9 Similarity analysis of images Yang Zhu
10 Something related to Quantization Name
11 Audio Signal Processing with Down-sampler and LPF Bo Yuan, Wei Wang
12 Audio Signal Generating and Processing Project Yimin Xiao
12 Student blog Name (s)




Back to ECE438

Back to Semester/Instructor Specific Course Wikis

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach