(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
*<span style="color:green">The explanation for each formula still needs to be added! In particular, some students said it was not clear how to get the convolution property in terms of f. So this needs to be explained clearly.</span> --[[User:Mboutin|Mboutin]] 09:04, 7 September 2010 (UTC) | *<span style="color:green">The explanation for each formula still needs to be added! In particular, some students said it was not clear how to get the convolution property in terms of f. So this needs to be explained clearly.</span> --[[User:Mboutin|Mboutin]] 09:04, 7 September 2010 (UTC) | ||
**<span style="color:green"> Provided explanation for each formula. </span> -[[User:zhao148|Zhao]] | **<span style="color:green"> Provided explanation for each formula. </span> -[[User:zhao148|Zhao]] | ||
+ | ***<span style="color:green"> Modified explanation for each formula. </span> -[[User:zhao148|Zhao]] 17:20, 15 September 2010 (UTC). | ||
{| | {| | ||
Line 21: | Line 22: | ||
{| | {| | ||
|- | |- | ||
− | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Pairs | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Pairs |
|- | |- | ||
| align="right" style="padding-right: 1em;" | | | align="right" style="padding-right: 1em;" | | ||
Line 95: | Line 96: | ||
{| | {| | ||
|- | |- | ||
− | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Properties | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Properties |
|- | |- | ||
| align="right" style="padding-right: 1em;" | | | align="right" style="padding-right: 1em;" | | ||
Line 120: | Line 121: | ||
{| | {| | ||
|- | |- | ||
− | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other CT Fourier Transform Properties | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other CT Fourier Transform Properties |
|- | |- | ||
| align="right" style="padding-right: 1em;" | [[Explain_CTFT_Parseval|Parseval's relation]] | | align="right" style="padding-right: 1em;" | [[Explain_CTFT_Parseval|Parseval's relation]] | ||
Line 128: | Line 129: | ||
---- | ---- | ||
− | [[MegaCollectiveTableTrial1|Back to Collective Table]] | + | [[MegaCollectiveTableTrial1|Back to Collective Table]] | [[2010_Fall_ECE_438_Boutin|Back to 438 main page]] |
[[Category:Formulas]] | [[Category:Formulas]] |
Latest revision as of 11:26, 15 September 2010
- I suggest putting a link next to each formula explaining how to obtain it from the formula in terms of $ \omega $. Also, I would not use the "mathcal" (curly) font for the transform variable, just a capital letter instead. --Mboutin 08:52, 3 September 2010 (UTC).
- Fixed the X(f) notation -Sbiddand
- The explanation for each formula still needs to be added! In particular, some students said it was not clear how to get the convolution property in terms of f. So this needs to be explained clearly. --Mboutin 09:04, 7 September 2010 (UTC)
CT Fourier Transform Pairs and Properties (frequency f in hertz per time unit) (info) | |
---|---|
(Click title to see explanation on how to obtain the formula in terms of f in hertz) | |
Definition CT Fourier Transform and its Inverse | |
CT Fourier Transform | $ X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $ |
Inverse CT Fourier Transform | $ \, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \, $ |
CT Fourier Transform Pairs | ||||
---|---|---|---|---|
x(t) | $ \longrightarrow $ | $ X(f) $ | ||
CTFT of a unit impulse | $ \delta (t)\ $ | $ 1 \! \ $ | ||
CTFT of a shifted unit impulse | $ \delta (t-t_0)\ $ | $ e^{-i2\pi ft_0} $ | ||
CTFT of a complex exponential | $ e^{iw_0t} $ | $ \delta (f - \frac{\omega_0}{2\pi}) \ $ | ||
$ e^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ | $ \frac{1}{a+i2\pi f} $ | |||
$ te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ | $ \left( \frac{1}{a+i2\pi f}\right)^2 $ | |||
CTFT of a cosine | $ \cos(\omega_0 t) \ $ | $ \frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \ $ | ||
CTFT of a sine | $ sin(\omega_0 t) \ $ | $ \frac{1}{2i} \left[\delta (f - \frac{\omega_0}{2\pi}) - \delta (f + \frac{\omega_0}{2\pi})\right] $ | ||
CTFT of a rect | $ \left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ $ | $ \frac{\sin \left(2\pi Tf \right)}{\pi f} \ $ | ||
CTFT of a sinc | $ \frac{2 \sin \left( W t \right)}{\pi t } \ $ | $ \left\{\begin{array}{ll}1, & \text{ if }|f| <\frac{W}{2\pi},\\ 0, & \text{else.}\end{array} \right. \ $ | ||
CTFT of a periodic function | $ \sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $ | $ \sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) \ $ | ||
CTFT of an impulse train | $ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ | $ \frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T}) \ $ |
CT Fourier Transform Properties | |||
---|---|---|---|
x(t) | $ \longrightarrow $ | $ X(f) $ | |
multiplication property | $ x(t)y(t) \ $ | $ X(f)*Y(f) =\int_{-\infty}^{\infty} X(\theta)Y(f-\theta)d\theta $ | |
convolution property | $ x(t)*y(t) \! $ | $ X(f)Y(f) \! $ | |
time reversal | $ \ x(-t) $ | $ \ X(-f) $ |
Other CT Fourier Transform Properties | |
---|---|
Parseval's relation | $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df $ |