Line 1: Line 1:
 
[[Category:ECE662]]
 
[[Category:ECE662]]
  
=Support Vector Machines=
+
=Support Vector Machines (SVM)=
  
  
 +
==Lecture Notes on SVM==
 +
*Spring 2008, Prof. Boutin: Lecture [[Lecture_11_-_Fischer's_Linear_Discriminant_again_OldKiwi|11]],[[Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem_OldKiwi|12]],[[Lecture_13_-_Kernel_function_for_SVMs_and_ANNs_introduction_OldKiwi|13]]
  
Put your content here . . .
+
== Relevant Homework  ==
 +
*[[Homework 2_OldKiwi|HW2, Spring 2008, Prof. Boutin]]
  
  
 +
== Useful Links ==
  
  
 +
* [http://en.wikipedia.org/wiki/Support_vector_machine Support Vector Machine on Wikipedia]
 +
 +
* [http://www.csie.ntu.edu.tw/~cjlin/libsvm/ LIBSVM ] - A library of SVM software, including both C and Matlab code.  Various interfaces through several platforms available as well.
 +
 +
* [http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf A Practical Guide to Support Vector Classification]: Mainly created for beginners, it quickly explains how to use the libsvm.
 +
 +
* [http://citeseer.ist.psu.edu/cache/papers/cs/26235/http:zSzzSzwww.isi.uu.nlzSzMeetingszSz..zSzTGVzSzfinal1.pdf/burges98tutorial.pdf A Tutorial on Support Vector Machines for Pattern Recognition]
 +
 +
*[http://ieeexplore.ieee.org/iel4/34/15030/00683777.pdf?isnumber=15030&prod=JNL&arnumber=683777&arSt=637&ared=646&arAuthor=Pontil%2C+M.%3B+Verri%2C+A. Support Vector Machines for 3D Object Recognition]
 +
 +
* [http://www.svms.org/software.html svms.org]:Here is a good webpage containing links to effective Support Vector Machines packages, written in C/C++. Matlab, applicable for binary/multi- calss classifications.
 +
 +
* [http://www2.lib.purdue.edu:2483/10.1145/130385.130401 Purdue link to SVM]
 +
 +
* [http://doi.acm.org/10.1145/130385.130401 ACM link to SVM]
 +
 +
* [http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html SVM and Kernel Methods Matlab Toolbox]
 +
 +
* [http://www.support-vector-machines.org/SVM_soft.html SVM - Support Vector Machines Software]
 +
 +
* [http://www.cs.iastate.edu/~dcaragea/SVMVis/data_sets.htm Some SVM sample data ]
 +
 +
* [http://www.mathworks.com/access/helpdesk/help/toolbox/bioinfo/index.html?/access/helpdesk/help/toolbox/bioinfo/ref/svmclassify.html&http://www.mathworks.com/cgi-bin/texis/webinator/search/ SVM Matlab Bioinformatics Toolbox ]
 +
 +
== Journal References ==
 +
 +
* M.A. Aizerman, E.M. Braverman, L.I. Rozoner. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Control, 1964, Vol. 25, pp. 821-837.
 +
 +
* Bernhard E. Boser and Isabelle M. Guyon and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. COLT '92: Proceedings of the fifth annual workshop on Computational learning theory. 1992. Pittsburgh, PA.
 +
 +
 +
 +
 +
----
 
[[ ECE662|Back to ECE662]]
 
[[ ECE662|Back to ECE662]]

Revision as of 09:33, 13 April 2010


Support Vector Machines (SVM)

Lecture Notes on SVM

  • Spring 2008, Prof. Boutin: Lecture 11,12,13

Relevant Homework


Useful Links

  • LIBSVM - A library of SVM software, including both C and Matlab code. Various interfaces through several platforms available as well.
  • svms.org:Here is a good webpage containing links to effective Support Vector Machines packages, written in C/C++. Matlab, applicable for binary/multi- calss classifications.

Journal References

  • M.A. Aizerman, E.M. Braverman, L.I. Rozoner. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Control, 1964, Vol. 25, pp. 821-837.
  • Bernhard E. Boser and Isabelle M. Guyon and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. COLT '92: Proceedings of the fifth annual workshop on Computational learning theory. 1992. Pittsburgh, PA.




Back to ECE662

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett