Contents
Homework 5 Solution, ECE438, Fall 2014
Questions 1
Compute the DFT of the following signals x[n] (if possible). How does your answer relate to the Fourier series coefficients of x[n]?
a) $ x_1[n] = \left\{ \begin{array}{ll} 1, & n \text{ multiple of } N\\ 0, & \text{ else}. \end{array} \right. $
Solution
The period of the input is N, so we will calculate the N-point DFT:
$ \begin{align} X_n[k]&=\sum_{n=0}^{N-1} x[n] e^{-j2\pi kn /N} \\ &= 1e^{-j2\pi k 0 /N} + 0e^{-j2\pi k1 /N} + \ldots + 0e^{-j2\pi k(N-1) /N} \\ &= 1 \text{ for all } k \end{align} $
b) $ x_1[n]= e^{j \frac{2}{3} \pi n} $
c) $ x_5[n]= e^{-j \frac{2}{1000} \pi n} $
d) $ x_2[n]= e^{j \frac{2}{\sqrt{3}} \pi n} $
e) $ x_6[n]= \cos\left( \frac{2}{1000} \pi n\right) ; $
f) $ x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n ) $
g) $ x_8[n]= (-j)^n . $
h) $ x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n $
Note: All of these DFTs are VERY simple to compute. If your computation looks like a monster, look for a simpler approach!
Question 2
Compute the inverse DFT of $ X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} $.
Note: Again, this is a VERY simple problem. Have pity for your grader, and try to use a simple approach!
Question 3
Prove the time shifting property of the DFT.
Discussion
You may discuss the homework below.
- write comment/question here
- answer will go here