Neyman-Pearson: How Bayes Decision Rule Controls Error
A slecture by Robert Ness
Partly based on the ECE662 Spring 2014 lecture material of Prof. Mireille Boutin.
Contents
介绍
模式识别 的目标是将新观察的特征向量进行分类。为了进行分类的决定,需要通过某种判决规则(decision rule)。在 统计学模式识别 一般假设特征向量是个随机变量“X”,又有个概率密度函数或者概率质量函数,并且此函数依赖其分类。假设有两个类型:(ω0,ω1), 以便写公式也不会失去一般性。X的概率密度或质量函数是f(X | ωi) (如下称pdf)。每个类型的先验概率写成P(ωi)。
两类问题有两种错误:错误选第一类、错误选第二类。下面说明(1)如果用贝叶斯(Bayes)判决规则,等于做似然比检验 (Likelihood Ratio Test),加上(2)Neyman-Pearson引理证明由于在用似然比检验,判决规则能控制一种错误率在一定的数两的同时将另一类的错误率控制在尽可能最少的数量。下面用统计学假设检验(Statistical Hypothesis Test)和标准正常分布(Standard Normal Distribution)作为例子。
似然比检验
似然比统计定义为:
$ \lambda(X)=\frac{f(X|\omega_0)}{f(X|\omega_1)} $
似然比检验定义为:
如果
$ \lambda(X) > k $
。。。决定ω0,不然决定ω1,∀ k:0 < k < 1
贝叶斯(Bayes)判决规则
gi(X) 是ωi的后验概率(posterior probability)。选ω1或ω2的判决规则为: 如果g0(X) > g1(X),就选ω0, 不然选ω1。据贝斯定理, 判决规则能以 似然比(likelihood ratio)表示:
$ \begin{align} & g_0(X) > g_1(X) \\ \Rightarrow & P(\omega_0|X) > P(\omega_1|X) \\ \Rightarrow & \frac{f(X|\omega_0)P(\omega_0)}{P(X)} > \frac{f(X|\omega_1)P(\omega_1)}{P(X)} \\ \Rightarrow & f(X|\omega_0)P(\omega_0) > f(X|\omega_1)P(\omega_1) \\ \Rightarrow & l(X) = \frac{f(X|\omega_0)}{f(X|\omega_1)} > \frac{P(\omega_1)}{P(\omega_0)} = k \end{align} $
贝叶斯判决规则就说明可以通过似然比与常数的比较进行决定,叫做似然比检测(likelihood ratio test)。
贝叶斯错误
为了评估判决规则的效果,需要计算错误的概率。计算需要如下的记法定义:
- $ \epsilon_0 $ = P(错误选ω1 | ω0正确),$ \epsilon_1 $ = P(错误选ω0 | ω1正确)
- Ri是选ωi的领域:
$ R_i=\{x\in X | choose \ \omega_i\} $
- r(X)= min(g0(X),g1(X))。
在贝叶斯决定规则下,错误几率等于贝叶斯错误几率(Bayes error rate):
$ \begin{align} \\ \epsilon_{Bayes} & = E(r(X)) = \int min(P(\omega_0)P(X|\omega_0), P(\omega_1)P(X|\omega1))dX \\ &= P(\omega_0) \int_{R_1}P(X|\omega_0)dX + P(\omega_1) \int_{R_0} P(X|\omega_1)dX \\ &= P(\omega_0)\epsilon_0 + P(\omega_1)\epsilon_1 \end{align} $
Neyman-Pearson引理
统计学中的假设检验有个概念叫做“一致最大功效检验(UMP test)”。UMP 的检验满足一个条件:定义为在固定一种错误率的同时尽可能减少另一种错误率的检验。
Neyman-Pearson引理:决定规则当UMP test的充分必要条件如下:
- ε0被固定在一位常数α然后决定规则是
- 如果
$ l(X)=\frac{P(X| \omega_0 )}{P(X| \omega_1)} > k $
决定选$ \omega_0 $
- 如果
$ l(X)=\frac{P(X| \omega_0 )}{P(X|\omega_1 )} < k $
决定选$ \omega_1 $。
统计学假设检验的决定规则
如果你曾经上过入门的统计学课,你大概能想起传统的假设检验. 如下为例子:
一位人类学研究者争对一个太平岛的部落。他有一个假设:此部落预期寿命比一般人长。全世界人口的预期寿命是67.2年。为了检验他的假设,他从公开记录中随机选出了100个讣告作为样本,发现样本平均预期寿命是72,标准差是15。为了保守,这位研究者不要太容易接受它的假设。他知道他的样本是随机变量,即使样本和人口的差别很大,有可能就此差别来自随机性。他想控制由于随机性错误接受他的假设的概率保证不超越.05.
似然比检验
这个例子完全可以用模式识别的语言来描述。为了达到简单的计算。。。
- 1 假设似然函数是正常分布(Normal Distribution)
- 2 不用全部100人的似然函数,而直接用充分统计量--就是样本平均值--的似然函数,此函数也是正常分布
- 3 把样本平均值的函数变成标准正常分布 (Standard Normal Distribution)。
把 μ 定义为此部落预期寿命。
零假设 (ω0): μ − 67.2 = 0
对立假设(ω1): μ − 67.2 > 0
把样本的100人的数据变成样本平均值“T”。如果ω0是正确,此部落的平均值是全世界人口的平均值。样本的平均值“T”就是随机差别,等于f(T|ω0)是正常分布(平均数是67.2,标准差是15)。如果ω1,部落的平均不一样。他的正常分布的平均值就跟全世界平均值不一样。由于我们在考虑似然函数,可以用此平均值的MLE--就是样本的平均值--,所以f(T|ω1)是正常分布(平均数是72,标准差是15)。最后用f(T|ω0)的平均值把两分布标准化。把N(x; a,b)代表平均值等于a标准差等于b的标正常分布的PDF。
z =(t - 67.2)/(15 * 15 / 100) = (72 - 67.2)/(15 * 15 / 100) = 2
φ(Z|ω0) = N(0,1)
φ(Z|ω0)= N(2,1)
似然比检验:
$ | 。随机特征向量是 T,而且条件pdf是标准正常密度分布。研究者从T抽一次抽样值 。 如上的H0、H1 、与α是传统的记法。α是 P(此判决规则选H1 | H0正确)的上限。在这种检验,”H0正确但选H1“的错误叫做第一型错误,”H1正确但选H0“叫做第二型错误。所以 P(此判决规则选H1 | H0正确)= P(第一型错误)。 ''这种假设检验最重要的特点是决定规则的目标是控制P(第一型错误)在α下。'' 假如α=.05。 '''[[Image:Rplot.png]]''' 粉红色的领域是在贝斯决定规则下(平等先验概率)第一型错误的概率。红色的领域是固定在.05以下第一型错误的领域 -- 在标准正常分布高于1 - .05分位点 = 高于1.644。贝斯的领域同时依赖<math> \omega_0 $ 跟$ \omega_1 $的分布 -- 具体说它依赖$ \omega_0 $密度函数减$ \omega_1 $密度函数的根。但是如果只想控制第一型错误,只需要看$ \omega_0 $分布。在这个检验,2 > 1.644, 决定规则让选H1.研究者大概要在他的论文宣告P值(显著性概率)为P(T>2| $ \omega_0 $ 正确)= 0.022,也就在是Ho的分布下2以上的曲线下面积。
这种检验的决定规则控制第一型错误的概率是为了避免在脆弱的证据下报告肯定的研究成果。如下所示:
- 首先将P(第一型错误)=ε0 固定在一定的数量α。
- 然后将P(第二型错误)=ε1控制在尽可能少的数量下。满足此条件的决定规则在统计学中叫做“一致最大功效检验(UMP test)”。
Neyman-Pearson引理:决定规则当UMP test的充分必要条件如下:
- ε0被固定在一位常数α然后决定规则是
- 如果
$ l(T)=\frac{P(T| \omega_0 )}{P(T| \omega_1)} > k $
决定选$ \omega_0 $
- 如果
$ l(T)=\frac{P(T| \omega_0 )}{P(T|\omega_1 )} < k $
决定选$ \omega_1 $。
结论
传统的统计学假设检验的目标是将一个类别的错误概率固定在一定的水平下,然后尽可能减少另一个列别的错误概率。统计学假设检验认为一种错误要比另一种严重,但是贝叶斯决定规则给两种错误平等待遇。Neyman-Pearson 引理说明进行似然比检测是满足统计学假设检验目标的充分必要条件。不过贝叶斯决定规则毕竟是似然比检测,所以贝叶斯决定规则的结果是固定一个类别的错误概率在一定的水平下,然后尽可能减少另一个列别的错误概率。
References
- Mireille Boutin, "ECE662: Statistical Pattern Recognition and Decision Making Processes," Purdue University, Spring 2014.
- Casella, George, and Roger L. Berger. Statistical inference. Vol. 70. Belmont, CA: Duxbury Press, 1990.
- Fukunaga, Keinosuke. Introduction to statistical pattern recognition. Academic press, 1990.
Questions and comments
If you have any questions, comments, etc. please post them On this page.