Revision as of 10:18, 1 October 2013 by Mhossain (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Theorem

Let $ A $ and $ B<math> be sets. Then <br/> '''(a)''' (A ∩ B) ⊂ A '''(b)''' A ⊂ (A ∪ B) and Intersection is distributive over union ⇔ A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) <br/> <math>A\cap (B\cup C) = (A\cap B)\cup (A\cap C $
where $ A $, $ B $ and $ C $ are events in a probability space.



Proof

(a) let x ∈ (A ∩ B) ⇔ x ∈ A and x ∈ B ⇒ x ∈ A ⇒ (A ∩ B) ⊂ A.
(b) let x ∈ A. Then it is true that x is either in A or in B ⇔ x ∈ (A ∪ B) ⇒ A ⊂ (A ∪ B). $ \blacksquare $



References



Back to list of all proofs

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett