Revision as of 14:20, 1 November 2010 by Han83 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)



Solution to Q1 of Week 11 Quiz Pool


The transfer function of the first and second systems are

$ H_1(z)=1-z^{-1}\,\! $
$ H_2(z)=\frac{1}{1-\frac{1}{2}z^{-1}} $

Then, the transfer function of the combined system, $ (T_1+T_2)[x[n]] $ is

$ \begin{align}H(z)=H_1(z)+H_2(z)&=1+z^{-1}+\frac{1}{1-\frac{1}{2}z^{-1}} \\ &=\frac{2-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}}{1-\frac{1}{2}z^{-1}}\end{align} $

Thus, the impulse response $ h[n] $ of the combined system is (if we assume 'casual'),

$ h[n]=\delta[n]-\delta[n-1]+(0.5)^n u[n]\,\! $

And the difference equation for the combined system is

$ \begin{align}&H(z)=\frac{Y(z)}{X(z)}=\frac{2-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}}{1-\frac{1}{2}z^{-1}} \\ &\Rightarrow Y(z)(1-\frac{1}{2}z^{-1})=X(z)(2-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}) \\ &\Rightarrow y[n]-\frac{1}{2}y[n-1]=2x[n]-\frac{3}{2}x[n-1]+\frac{1}{2}x[n-2] \end{align} $



Back to Lab Week 11 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett