Revision as of 17:59, 26 October 2010 by Han83 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)



Solution to Q1 of Week 10 Quiz Pool


a. The difference equation for this system is

$ \begin{align} & Y(z) = az^{-1}Y(z)+X(z)-z^{-1}X(z) \\ & H(z) = \frac{Y(z)}{X(z)} = \frac{1-z^{-1}}{1-az^{-1}} \\ \end{align}\,\! $
poles at $ z=a $ and zeros at $ z=1 $.

b. ROC $ |z|>a $

$ H(z)=\frac{1}{1-az^{-1}}-\frac{z^{-1}}{1-az^{-1}} $
$ \Rightarrow h[n]=a^{n}u[n]-a^{n-1}u[n-1] $
The system is stable if ROC contains the unit circle ($ |z|=1 $), therefore $ |a|<1 $.

c. ROC $ |z|<a $

$ H(z)=\frac{1}{1-az^{-1}}-\frac{z^{-1}}{1-az^{-1}} $
$ \Rightarrow h[n]=-a^{n}u[-n-1]+a^{n-1}u[-(n-1)-1] $
$ \Rightarrow h[n]=-a^{n}u[-n-1]+a^{n-1}u[-n] $
The system is stable if ROC contains the unit circle ($ |z|=1 $), therefore $ |a|>1 $.

Back to Lab Week 10 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett