Solution to Q1 of Week 10 Quiz Pool


a. The difference equation for this system is

$ \begin{align} & Y(z) = az^{-1}Y(z)+X(z)-z^{-1}X(z) \\ & H(z) = \frac{Y(z)}{X(z)} = \frac{1-z^{-1}}{1-az^{-1}} \\ \end{align}\,\! $
poles at $ z=a $ and zeros at $ z=1 $.

b. ROC $ |z|>a $

$ H(z)=\frac{1}{1-az^{-1}}-\frac{z^{-1}}{1-az^{-1}} $
$ \Rightarrow h[n]=a^{n}u[n]-a^{n-1}u[n-1] $
The system is stable if ROC contains the unit circle ($ |z|=1 $), therefore $ |a|<1 $.

c. ROC $ |z|<a $

$ H(z)=\frac{1}{1-az^{-1}}-\frac{z^{-1}}{1-az^{-1}} $
$ \Rightarrow h[n]=-a^{n}u[-n-1]+a^{n-1}u[-(n-1)-1] $
$ \Rightarrow h[n]=-a^{n}u[-n-1]+a^{n-1}u[-n] $
The system is stable if ROC contains the unit circle ($ |z|=1 $), therefore $ |a|>1 $.

Credit: Prof. Charles Bouman

Back to Lab Week 10 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin