Revision as of 06:50, 27 September 2010 by Han83 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)



Solution to Q6 of Week 6 Quiz Pool


Downsample.jpg

$ \begin{align} \text{(a)} \quad & x[n]=\delta[n] \;\; \Rightarrow \;\; X(e^{jw})=1 \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{jw})H(e^{jw}) = (1)\text{rect}\Big(\frac{w}{\pi}\Big) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & \Rightarrow \;\; y[n] = \frac{\text{sin}\big(\frac{\pi}{2}n\big)}{\pi n} = \frac{1}{2}\frac{\text{sin}\big(\frac{\pi}{2}n\big)}{\pi \frac{n}{2}} \\ & z[n] = y[2n] = \frac{1}{2}\frac{\text{sin}\big(\pi n\big)}{\pi n} \\ \end{align} \,\! $

$ \begin{align} \text{(b)} \quad & x[n] = \delta[n-1] \;\; \Rightarrow \;\; X(e^{jw}) = e^{-jw} \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{jw})H(e^{jw}) = e^{-jw}\text{rect}\Big(\frac{w}{\pi}\Big) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & \Rightarrow \;\; y[n] = \frac{\text{sin}\big(\frac{\pi}{2}(n-1)\big)}{\pi (n-1)} = \frac{1}{2}\frac{\text{sin}\big(\frac{\pi}{2}(n-1)\big)}{\pi \frac{(n-1)}{2}} \\ & z[n] = y[2n] = \frac{1}{2}\frac{\text{sin}\big(\pi (n-\frac{1}{2})\big)}{\pi (n-\frac{1}{2})} \\ \end{align} \,\! $

Note that, since it is downsampled by a factor of 2, $ z[n] $ is shifted 0.5 to the right compared to $ z[n] $ of (a), even though the input $ x[n] $ is shifted 1 to the right compared to the input $ x[n] $ of (a).

$ \begin{align} \text{(c)} \quad & x[n] = 1 \;\; \Rightarrow \;\; X(e^{jw})=2\pi\delta(w) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{jw})H(e^{jw}) = 2\pi\delta(w)\text{rect}\Big(\frac{w}{\pi}\Big) = 2\pi\delta(w) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & \Rightarrow \;\; y[n]=1 \\ & z[n]=y[2n]=1 \\ \end{align} \,\! $

$ \begin{align} \text{(d)} \quad & x[n] = \text{cos}\big(\frac{\pi}{4}n\big) \;\; \Rightarrow \;\; X(e^{jw}) = \pi \Big[ \delta \big( w - \frac{\pi}{4} \big) + \delta \big( w + \frac{\pi}{4} \big) \Big] \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{jw})H(e^{jw}) = \pi \Big[ \delta \big( w - \frac{\pi}{4} \big) + \delta \big( w + \frac{\pi}{4} \big) \Big] \text{rect}\Big(\frac{w}{\pi}\Big) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & \Rightarrow \;\; y[n] = \text{cos}\big(\frac{\pi}{4}n\big) \\ & z[n] = y[2n] = \text{cos}\big(\frac{\pi}{4}(2n)\big) = \text{cos}\big(\frac{\pi}{2}n \big) \\ \end{align} \,\! $


Back to Lab Week 6 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett