Solution to Q6 of Week 6 Quiz Pool


Downsample.jpg

$ \begin{align} \text{(a)} \quad & x[n]=\delta[n] \;\; \Rightarrow \;\; X(e^{jw})=1 \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{jw})H(e^{jw}) = (1)\text{rect}\Big(\frac{w}{\pi}\Big) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & \Rightarrow \;\; y[n] = \frac{\text{sin}\big(\frac{\pi}{2}n\big)}{\pi n} = \frac{1}{2}\frac{\text{sin}\big(\frac{\pi}{2}n\big)}{\pi \frac{n}{2}} \\ & z[n] = y[2n] = \frac{1}{2}\frac{\text{sin}\big(\pi n\big)}{\pi n} \\ \end{align} \,\! $

$ \begin{align} \text{(b)} \quad & x[n] = \delta[n-1] \;\; \Rightarrow \;\; X(e^{jw}) = e^{-jw} \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{jw})H(e^{jw}) = e^{-jw}\text{rect}\Big(\frac{w}{\pi}\Big) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & \Rightarrow \;\; y[n] = \frac{\text{sin}\big(\frac{\pi}{2}(n-1)\big)}{\pi (n-1)} = \frac{1}{2}\frac{\text{sin}\big(\frac{\pi}{2}(n-1)\big)}{\pi \frac{(n-1)}{2}} \\ & z[n] = y[2n] = \frac{1}{2}\frac{\text{sin}\big(\pi (n-\frac{1}{2})\big)}{\pi (n-\frac{1}{2})} \\ \end{align} \,\! $

Note that, since it is downsampled by a factor of 2, $ z[n] $ is shifted 0.5 to the right compared to $ z[n] $ of (a), even though the input $ x[n] $ is shifted 1 to the right compared to the input $ x[n] $ of (a).

$ \begin{align} \text{(c)} \quad & x[n] = 1 \;\; \Rightarrow \;\; X(e^{jw})=2\pi\delta(w) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{jw})H(e^{jw}) = 2\pi\delta(w)\text{rect}\Big(\frac{w}{\pi}\Big) = 2\pi\delta(w) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & \Rightarrow \;\; y[n]=1 \\ & z[n]=y[2n]=1 \\ \end{align} \,\! $

$ \begin{align} \text{(d)} \quad & x[n] = \text{cos}\big(\frac{\pi}{4}n\big) \;\; \Rightarrow \;\; X(e^{jw}) = \pi \Big[ \delta \big( w - \frac{\pi}{4} \big) + \delta \big( w + \frac{\pi}{4} \big) \Big] \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{jw})H(e^{jw}) = \pi \Big[ \delta \big( w - \frac{\pi}{4} \big) + \delta \big( w + \frac{\pi}{4} \big) \Big] \text{rect}\Big(\frac{w}{\pi}\Big) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & \Rightarrow \;\; y[n] = \text{cos}\big(\frac{\pi}{4}n\big) \\ & z[n] = y[2n] = \text{cos}\big(\frac{\pi}{4}(2n)\big) = \text{cos}\big(\frac{\pi}{2}n \big) \\ \end{align} \,\! $


Credit: Prof. Charles Bouman

Back to Lab Week 6 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva