Revision as of 07:42, 6 October 2008 by Aedershe (Talk)

a)

g(x)+h(x)=0

g(x) even h(x) odd

g is both even and odd

g(x)=g(-x)=-g(x)

b)

$ f(x)=f_{e}(x)+f_{0}(x) $

$ f(-x)=f_{e}(-x)+f_{0}(-x)=f_{e}(x)-f_{0}(x) $

solve for $ f_{e}(x) $ and $ f_{0}(x) $

$ f_{e}(x)= (f(x)+f(-x))/2 $

$ f_{0}(x)= (f(x)-f(-x))/2 $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett