a)
$ g(x)+h(x)=0 $
$ g(x) $ even $ h(x) $ odd
g is both even and odd
$ g(x)=g(-x)=-g(x) $
b)
$ f(x)=f_{e}(x)+f_{0}(x) $
$ f(-x)=f_{e}(-x)+f_{0}(-x)=f_{e}(x)-f_{0}(x) $
solve for $ f_{e}(x) $ and $ f_{0}(x) $
$ f_{e}(x)= (f(x)+f(-x))/2 $
$ f_{0}(x)= (f(x)-f(-x))/2 $