a)
g(x)+h(x)=0
g(x) even h(x) odd
g is both even and odd
g(x)=g(-x)=-g(x)
b)
$ f(x)=f_{e}(x)+f_{0}(x) $
$ f(-x)=f_{e}(-x)+f_{0}(-x)=f_{e}(x)-f_{0}(x) $
$ solve for f_{e}(x) and f_{0}(x) $
$ f_{e}(x)= (f(x)+f(-x))/2 $
$ f_{0}(x)= (f(x)-f(-x))/2 $
a)
g(x)+h(x)=0
g(x) even h(x) odd
g is both even and odd
g(x)=g(-x)=-g(x)
b)
$ f(x)=f_{e}(x)+f_{0}(x) $
$ f(-x)=f_{e}(-x)+f_{0}(-x)=f_{e}(x)-f_{0}(x) $
$ solve for f_{e}(x) and f_{0}(x) $
$ f_{e}(x)= (f(x)+f(-x))/2 $
$ f_{0}(x)= (f(x)-f(-x))/2 $