Revision as of 06:10, 23 January 2009 by Chihw (Talk | contribs)

Infinite geometric series formula assuming $ |r|<1 $

  • $ \sum_{k=1}^\infty ar^{k-1}=\frac{a}{1-r} $ if $ |r|<1 $
  • $ \sum_{k=1}^\infty kar^{k-1}=\frac{a}{(1-r)^2} $ if $ |r|<1 $


Finite sum of a geometric sequence (which does no require $ |r|<1 $)

  • $ \sum_{k=1}^K ar^{k-1}=\frac{a(1-r^K)}{1-r} $ if $ |r|<1 $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn