Infinite geometric series formula assuming $ |r|<1 $

  • $ \sum_{k=1}^\infty ar^{k-1}=\frac{a}{1-r} $
  • $ \sum_{k=1}^\infty kar^{k-1}=\frac{a}{(1-r)^2} $


Finite sum of a geometric sequence (which does no require $ |r|<1 $)

  • $ \sum_{k=1}^K ar^{k-1}=\frac{a(1-r^K)}{1-r} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett