Revision as of 01:34, 5 December 2008 by Aehumphr (Talk)

Suggested problems from Oppenheim and Willsky

Chapter 7

  1. Sampling
    1. Impulse Train Sampling
    2. The Sampling Theorem and the Nyquist
  2. Signal Reconstruction Using Interpolation: the fitting of a continuous signal to a set of sample values
    1. Sampling with a Zero-Order Hold (Horizontal Plateaus)
    2. Linear Interpolation (Connect the Samples)
  3. Undersampling: Aliasing
  4. Processing CT Signals Using DT Systems (Vinyl to CD)
    1. Analog vs. Digital: The Show-down (A to D conversion -> Discrete-Time Processing System -> D to A conversion
  5. Sampling DT Signals (CD to MP3 albeit a complicated sampling algorithm, MP3 is less dense signal)

7.1, 7.2, 7.3, 7.4, 7.5, 7.7, 7.10, 7.22, 7.29, 7.31, 7.33

Chapter 8

  1. Complex Exponential and Sinusoidal Amplitude Modulation (AM) $ y(t) = x(t)c(t) $
    1. $ c(t) = e^{\omega_c t + \theta_c} $
    2. $ c(t) = cos(\omega_c t + \theta_c ) $
  2. Recovering the Information Signal $ x(t) $ Through Demodulation
    1. Synchronous
    2. Asynchronous
  3. Frequency-Division Multiplexing
  4. Single-Sideband Sinusoidal Amplitude Modulation
  5. AM with A Pulse-Train Carrier
$ c(t) = \sum_{k=-\infty}^{+\infty}\frac{sin()k\omega_c \Delta /2}{\pi k}e^{jk\omega_c t} $

8.1, 8.2, 8.3, 8.5, 8.8, 8.10, 8.11, 8.12, 8.21, 8.23

Chapter 9

9.2, 9.3, 9.4, 9.6, 9.8, 9.9, 9.21, 9.22

Chapter 10

10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8, 10.9, 10.10, 10.11, 10.13, 10.15, 10.21, 10.22, 10.23, 10.24, 10.25, 10.26, 10.27, 10.30, 10.31, 10.32, 10.33, 10.43, 10.44.

Note: If a problem states that you should use “long division”, feel free to use the geometric series formula instead.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett