Contents
Exam 3 Material Summary
Previous Yet Pertinent Material
CT Fourier Transform Pair $ \mathcal{X}(\omega) = \int_{-\infty}^{+\infty}x(t)e^{-j\omega t} \,dt $
$ x(t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty}\mathcal{X}(\omega)e^{j\omega t} \,dt $
DT Fourier Transform Pair
$ X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n} $
$ x[n] = \frac{1}{2\pi}\int_{2\pi} X(e^{j\omega})e^{j\omega n} $
An infinite geometric series converges iff |r| < 1
$ \int_{T_1}^{T_2} = -\int_{T_2}^{T_1} $
$ \int_{-\infty}^{+\infty}x(t)u(t)\,dt = \int_{0}^{+\infty}x(t)\,dt $ $ \sum_{n = -\infty}^{+\infty} x[n]u[n] = \sum_{n = 0}^{+\infty} x[n] $ Something with discrete signals vs CT signals results in the changing of the limits to include one additional value.
All DT Fourier transforms are periodic with period $ 2\pi $
Chapter 7
- Sampling
- Impulse Train Sampling
- The Sampling Theorem and the Nyquist
- Signal Reconstruction Using Interpolation: the fitting of a continuous signal to a set of sample values
- Sampling with a Zero-Order Hold (Horizontal Plateaus)
- Linear Interpolation (Connect the Samples)
- Undersampling: Aliasing
- Processing CT Signals Using DT Systems (Vinyl to CD)
- Analog vs. Digital: The Show-down (A to D conversion -> Discrete-Time Processing System -> D to A conversion
- Sampling DT Signals (CD to MP3 albeit a complicated sampling algorithm, MP3 is less dense signal)
Sampling Theory
- Let x(t) be a band-limited signal with $ X(j\omega) = 0 $ for $ |\omega| > \omega_M $. Then x(t) is uniquely determined by its samples $ x(nT), n = 0, \pm 1, \pm 2,..., \mbox{ if} $
-
- $ \,\!\omega_s > 2\omega_M $
- where
- $ \omega_s = \frac{2\pi}{T} $ .
- Given these samples, we can reconstruct x(t) by generating a periodic impulse train in which successive impulses have amplitudes that are successive sample values. This impulse train is then processed through an ideal lowpass filter with gain T and cutoff frequency greater than \omega_M and les than \omega_s - \omega_M. The resulting output signal will exactly equal x(t)
Observations
- To determine if x(t) is band-limited, one must exam $ X(\omega) $ the Fourier transform of x(t).
- $ \,\!p(t) = \sum_{n = -\infty}^{+\infty}\delta (t - nT) $
- |
- |
- v
- - ->X- - ->|H(j\omega)|- - -> x_r(t)
Recommended Exercises: 7.1, 7.2, 7.3, 7.4, 7.5, 7.7, 7.10, 7.22, 7.29, 7.31, 7.33
Chapter 8
- Complex Exponential and Sinusoidal Amplitude Modulation (You Can Hear the Music on the Amplitude Modulation Radio -Everclear) Systems with the general form $ y(t) = x(t)c(t) $ where $ c(t) $ is the carrier signal and $ x(t) $ is the modulating signal. The carrier signal has its amplitude multiplied (modulated) by the information-bearing modulating signal.
- Complex exponential carrier signal: $ c(t) = e^{\omega_c t + \theta_c} $
- Sinusoidal carrier signal: $ c(t) = cos(\omega_c t + \theta_c ) $
- Recovering the Information Signal $ x(t) $ Through Demodulation
- Synchronous
- Asynchronous
- Frequency-Division Multiplexing (Use the Entire Width of that Frequency Band!)
- Single-Sideband Sinusoidal Amplitude Modulation (Save the Bandwidth, Save the World!)
- AM with a Pulse-Train Carrier Digital Airwaves
- $ c(t) = \sum_{k=-\infty}^{+\infty}\frac{sin(k\omega_c \Delta /2)}{\pi k}e^{jk\omega_c t} $
- Time-Division Multiplexing "Dost thou love life? Then do not squander time; for that's the stuff life is made of." -Benjamin Franklin)
Recommended Exercises: 8.1, 8.2, 8.3, 8.5, 8.8, 8.10, 8.11, 8.12, 8.21, 8.23
Chapter 9
1. The Laplace Transform "Here I come to save the day!"
$ X(s) = \int_{-\infty}^{+\infty}x(t)e^{-st}\, dt $
s is a complex number of the form $ \sigma + j\omega $ and if $ \sigma = 0 $ then this equation reduces to the Fourier Transform of $ x(t) $. Indeed, the LT can be viewed as the FT of the signal $ x(t)e^{-\sigma t} $ as follows:
$ \mathcal{F}\lbrace x(t)e^{-\sigma t} \rbrace = \mathcal{X}(\omega) = \int_{-\infty}^{+\infty}x(t)e^{-\sigma t}e^{-j\omega t}\, dt $
2. The Region of Convergence for Laplace Transforms (To Infinity or Converge!)
Definitions
A signal x(t) is:
- right sided if there exists a t_0 such that x(t) = 0 for t < t_0
- left sided if there exists a t_0 such that x(t) = 0 for t > t_0
- two sided if it extends infinitely for both t > 0 and t < 0
- of finite duration if there exist two values of t, T_1 and T_2 such that x(t) = 0 for t < T_1 and t > T_2
From 4: A two sided signal can be represented as the sum of a right sided signal and a left sided signal if the signal is divided at any arbitrary T_0. The two sided signal conver
A Laplace transform is rational if it is of the form X(s) = \frac{N(s)}{D(s)} Property
- : The ROC of X(s) consists of strips parallel to the $ j\omega $-axis in the s-plane.
- : For rational Laplace transforms, the ROC does not contain any poles.
- : If x(t) is of finite duration and is absolutely integrable, then the ROC is the entire s-plane.
- : If x(t) is right sided, and if the line Re{s} = $ \sigma_0 $ is in the ROC, then all values of s for which Re{s} > $ \sigma_0 $ will also be in the ROC.
- : If x(t) is left sided, and if the line Re{s} = \sigma_0 is in the ROC, then all values of s for which Re{s} < \sigma_0 will also be in the ROC.
- : If x(t) is two sided, and if the line Re{s} = \sigma_0 is in the ROC, then the ROC will consist of a strip in the s-plane that includes the line Re{s} = \sigma_0.
- : If the Laplace transform X(s) of x(t) is rational, then its ROC is bounded by poles or extends to infinity. In addition, no poles of X(s) are contained in the ROC.
- : If the Laplace Transform X(s) of x(t) is rational, then if x(t) is right sided, the ROC is the region in the s-plane to the right of the rightmost pole. If x(t) is left sided, the ROC is the region in the s-plane to the left of the leftmost pole.
Notes:
- If giving a Laplace Transform for an answer to a question, the definition is incomplete without providing a ROC.
- In order to determine the inverse Laplace transform of a LT X(s), one must consider its ROC. The ROC coupled with properties 1-8 will be used to distinguish between the signals that produce the same LT X(s)
Partial Fraction Expansion
Any rational function $ X(s) = \frac{N(s)}{D(s)} $ can be expressed as a linear combination of LOWER ORDER terms.
- Example
- $ X(s) = \frac{(s - z_1)(s-z_2)}{(s-p_1)(s-p_2)^2} = \frac{A}{s-p_1} + \frac{B}{s-p_2} + \frac{C}{(s-p_2)^2} $
- z_1 and z_2 are referred to as the zeroes of the function because X(z_1) = 0;
- p_1 and p_2 are referred to the poles of the function because X(p_1) is infinity creating a large "pole" on the graph
- p_2 is a second order pole because it occurs twice
- To obtain the coefficients you can use the relationship:
- $ R = (s-p_R)X(s) \Bigg|_{s=p_{r}}\,\,\, $for this example the 2nd order pole creates a special case
- The coefficient B cannot be computed directly because (s-p_2)X(s) still leaves a pole at p_2 and therefore cannot be
- evaluated at s=p_2. A and C can be computed easily however, and once those are computed there is only one unknown left
- in the equation and can clearly be obtained through direct algebraic manipulation.
- If that method proves fruitless or too hard to compute, then a system of equations can be obtained by acquiring a
- common denominator for the RHS of the equation resulting in $ A(s-p_2)^2 + B(s-p_2)(s-p_1) + C(s-p_1) $. This equation is
- precisely equal to the numerator of the LHS of the equation therefore, after algebraically expanding all the terms. You
- can obtain a system of 3 equations and 3 unknowns which may be solved using a variety of methods, including those
- learned in linear algebra, like Kramer's(need to double check that name) rule. Methods learned in high school algebra
- also apply.
3. The Inverse Laplace Transform
$ x(t) = \frac{1}{2\pi}\int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st}\,ds $
for values of $ s = \sigma + j\omega $ in the ROC. The formal evaluation of the integral requires contour integration in the complex plane which is beyond the scope of this course.
- 3.1 The Laplace Transforms we will consider will fall into several categories that can be inverted using tables.
- $ X(s) = \sum_{i=1}^{m} \frac{A_i}{s+a_i} $
Laplace Transform Properties | |||
---|---|---|---|
Property | Signal | Laplace Transform | ROC |
Linearity | $ \,\! ax_1(t) + bx_2(t) $ | $ \,\! aX_1(s)+bX_2(s) $ | At least $ R_1 \cap R_2 $ |
Time Shifting | $ \,\! x(t-t_0) $ | $ e^{-st_0}X(s) $ | R |
Shifting in the s-Domain | $ e^{s_0 t}x(t) $ | $ \,\! X(s-s_0) $ | Shifted version of R (i.e., s is in the ROC if $ s - s_0 $ is in R) |
Time scaling | $ \,\! x(at) $ | $ \frac{1}{|a|}X\Bigg( \frac{s}{a} \Bigg) $ | Scaled ROC (i.e., s is in the ROC if s/a is in R) |
Conjugation | $ \,\! x^{*}(t) $ | $ \,\! X^{*}(s^{*}) $ | R |
Convolution | $ \,\! x_1(t)*x_2(t) $ | $ \,\! X_1(s)X_2(s) $ | At least $ R_1 \cap R_2 $ |
Differentiation in the Time Domain | $ \frac{d}{dt}x(t) $ | $ \,\! sX(s) $ | At least R |
Differentiation in the s-Domain | $ \,\! -tx(t) $ | $ \frac{d}{ds}X(s) $ | R |
Integration in the Time Domain | $ \int_{-\infty}^{t}x(\tau)\,d\tau $ | $ \frac{1}{s}X(s) $ | At least $ R \cap \lbrace \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 \rbrace $ |
$ \,\!\mbox{Initial- and Final-Value Theorem} $
$ \,\!\mbox{If } x(t) = 0 \mbox{ for } t < 0 \mbox{ and } x(t)\mbox{ contains} $
$ \,\! \mbox{no impulses or higher-order singularities at }t = 0\mbox{, then} $
|
Laplace Transform Pairs | |||
---|---|---|---|
Transform Pair | Signal | Transform | ROC |
1 | $ \,\!\delta(t) $ | $ 1 $ | $ All\,\, s $ |
2 | $ \,\! u(t) $ | $ \frac{1}{s} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ |
3 | $ \,\! -u(-t) $ | $ \frac{1}{s} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $ |
4 | $ \frac{t^{n-1}}{(n-1)!}u(t) $ | $ \frac{1}{s^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ |
5 | $ -\frac{t^{n-1}}{(n-1)!}u(-t) $ | $ \frac{1}{s^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $ |
6 | $ \,\!e^{-\alpha t}u(t) $ | $ \frac{1}{s+\alpha} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ |
7 | $ \,\! -e^{-\alpha t}u(-t) $ | $ \frac{1}{s+\alpha} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $ |
8 | $ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ | $ \frac{1}{(s+\alpha )^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ |
9 | $ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ | $ \frac{1}{(s+\alpha )^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $ |
10 | $ \,\!\delta (t - T) $ | $ \,\! e^{-sT} $ | $ All\,\, s $ |
11 | $ \,\![cos( \omega_0 t)]u(t) $ | $ \frac{s}{s^2+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ |
12 | $ \,\![sin( \omega_0 t)]u(t) $ | $ \frac{\omega_0}{s^2+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ |
13 | $ \,\![e^{-\alpha t}cos( \omega_0 t)]u(t) $ | $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ |
14 | $ \,\![e^{-\alpha t}sin( \omega_0 t)]u(t) $ | $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ |
15 | $ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ | $ \,\!s^{n} $ | $ All\,\, s $ |
16 | $ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ | $ \frac{1}{s^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ |
Recommended Exercises: 9.2, 9.3, 9.4, 9.6, 9.8, 9.9, 9.21, 9.22
Chapter 10
1. The z-Transform The z-Transform is the more general case of the discrete-time Fourier transform. For the DT Fourier transform $ z = e^{j\omega } $ with $ \omega $ real $ \Rightarrow |z| = 1 $. When z is not restricted to 1, it has the form $ re^{j\omega} $. This can be developed into the more general case of transform called z-Transform. The development of the z-Transform is outlined in Chapter 10.1 of the Oppenheim and Wilsky text.
- $ X(z) = \sum_{n = -\infty}^{+\infty}x[n]z^{-n} $
2. Region of Convergence for the z-Transform
3. The Inverse z-Transform
The derivation of the inverse z-Transform equation is outlined in chapter 10.3 of the text (pg 757-8).
- $ x[n] = \frac{1}{2\pi j} \oint X(z)z^{n-1}\,dz $
This is a closed loop integral around a CCW rotation centered at the origin with radius r. r can be any value for which X(z) converges.
z-Transform Properties | |||
---|---|---|---|
Property | Signal | z-Transform | ROC |
Linearity | $ \,\! ax_1[n] + bx_2[n] $ | $ \,\! aX_1(z)+bX_2(z) $ | At least $ R_1 \cap R_2 $ |
Time Shifting | $ \,\! x[n-n_0] $ | $ z^{-n_0}X(z) $ | R, except for the possible addition or deletion of the origin |
Scaling in the z-Domain | $ e^{j\omega_0 n}x[n] $ | $ X(e^{-j\omega_0}z) $ | R |
$ z_0^nx[n] $ | $ X\Bigg( \frac{z}{z_0} \Bigg) $ | $ z_0 R $ | |
$ \,\! a^nx[n] $ | $ \,\! X(a^{-1}z) $ | a|R= the set of point {|a|z} for z in R | |
Time Reversal | $ \,\! x[-n] $ | $ \,\! X(z^{-1}) $ | Inverted R (i.e., R^-1= the set of point z^-1, where z is in R) |
Time Expansion | $ x_{(k)}[n] = \begin{cases} x[r], & \mbox{if }n=rk \mbox{ for }r\in \mathbb{Z}\\ 0, &\mbox{if }n\neq rk \mbox{ for } r\in \mathbb{Z}\end{cases} $ | $ \,\! X(z^k) $ | $ R^{1/k} $ (i.e., the set of points $ z^{1/k} $, where z is in R) |
Conjugation | $ \,\! x^{*}[n] $ | $ \,\! X^{*}(z^{*}) $ | R |
Convolution | $ \,\! x_1[n] * x_2[n] $ | $ \,\! X_1(z)X_2(z) $ | At least the intersection of R_1 and R_2 |
First Difference | $ \,\! x[n] - x[n-1] $ | $ \,\! (1-z^{-1})X(z) $ | At least the intersection of R and $ |z| > 0 $ |
Accumulation | $ \sum_{k = -\infty}^{n}x[k] $ | $ \frac{1}{1-z^{-1}}X(z) $ | At least the intersection of R and $ |z| > 1 $ |
Differentiation in the z-Domain | $ \,\! nx[n] $ | $ -z\frac{dX(z)}{dz} $ | R |
Initial-Value Theorem
If x[n] = 0 for n < 0, then $ x[0] = \lim_{z\rightarrow \infty} X(z) $ |
z-Transform Pairs
z-Transform Pairs | |||
---|---|---|---|
# | Signal | Transform | ROC |
1 | $ \,\!\delta[n] $ | $ \,\! 1 $ | All $ \,\! z $ |
2 | $ \,\!u[n] $ | $ \,\!\frac{1}{1-z^{-1}} $ | $ \,\! |z| > 1 $ |
3 | $ \,\!-u[-n-1] $ | $ \,\!\frac{1}{1-z^{-1}} $ | $ \,\! |z| < 1 $ |
4 | $ \,\!\delta [n-m] $ | $ \,\! z^{-m} $ | All $ \,\!z $ except 0 (if $ \,\! m > 0 $) or $ \,\!\infty\mbox{(if } m < 0 \mbox{)} $ |
5 | $ \,\!\alpha^{n}u[n] $ | $ \,\! \frac{1}{1-\alpha z^{-1}} $ | $ \,\! |z| > |\alpha| $ |
6 | $ \,\! -\alpha^{n}u[-n-1] $ | $ \,\!\frac{1}{1-\alpha z^{-1}} $ | $ \,\! |z| < |\alpha| $ |
7 | $ \,\! n\alpha^{n}u[n] $ | $ \,\! \frac{\alpha z^{-1}}{(1-\alpha z^{-1})^{2}} $ | $ \,\! |z| > |\alpha| $ |
8 | $ \,\! -n\alpha^{n}u[-n-1] $ | $ \,\! \frac{\alpha z^{-1}}{(1-\alpha z^{-1})^{2}} $ | $ \,\! |z| < |\alpha| $ |
9 | $ \,\! [cos(\omega_0 n)]u[n] $ | $ \,\! \frac{1-[cos(\omega_0)]z^{-1}}{1-[2cos(\omega_0)]z^{-1}+z^{-2}} $ | $ \,\! |z| > 1 $ |
10 | $ \,\! [sin(\omega_0 n)]u[n] $ | $ \,\! \frac{1-[cos(\omega_0)]z^{-1}}{1-[2cos(\omega_0)]z^{-1}+z^{-2}} $ | $ \,\! |z| > 1 $ |
11 | $ \,\! [r^{n}cos(\omega_0 n)]u[n] $ | $ \,\! \frac{1-[rcos(\omega_0)]z^{-1}}{1-[2rcos(\omega_0)]z^{-1}+r^{2}z^{-2}} $ | $ \,\! |z| > r $ |
12 | $ \,\! [r^{n}sin(\omega_0 n)]u[n] $ | $ \,\! \frac{1-[rcos(\omega_0)]z^{-1}}{1-[2rcos(\omega_0)]z^{-1}+r^{2}z^{-2}} $ | $ \,\! |z| > r $ |
Recommended Exercises: 10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8, 10.9, 10.10, 10.11, 10.13, 10.15, 10.21, 10.22, 10.23, 10.24, 10.25, 10.26, 10.27, 10.30, 10.31, 10.32, 10.33, 10.43, 10.44.
Note: If a problem states that you should use “long division”, feel free to use the geometric series formula instead.