Contents
Equations
Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $
From Phil Cannon
Input Signal
$ x(t)=cos(3*pi*t)cos(6*pi*t)\! $
Ao
$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{0}dt $
A1
$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{1}dt $
A2
$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{2}dt $
A-1
$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{-1}dt $
A-2
$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{-2}dt $